リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Interferometry of black holes with Hawking radiation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Interferometry of black holes with Hawking radiation

Nambu, Yasusada Noda, Sousuke 名古屋大学

2022.02.15

概要

We investigate the wave optical imaging of black holes with Hawking radiation. The spatial correlation function of Hawking radiation is expressed in terms of transmission and reflection coefficients for scalar wave modes and evaluated by numerically summing over angular quantum numbers for the Unruh- Hawking state of the Kerr-de Sitter black hole. Then, wave optical images of an evaporating black hole are obtained by the Fourier transformation of the spatial correlation function. For a short wavelength, the image of the black hole with the outgoing mode of the Unruh-Hawking state has the appearance of a star with its surface given by the photon sphere. It is found that interference between incoming modes from the cosmological horizon and reflected modes due to the scattering of the black hole can enhance brightness of images in the vicinity of the photon sphere. For a long wavelength, the entire field of view is bright, and the emission region of Hawking radiation cannot be identified.

この論文で使われている画像

参考文献

[1] V. P. Frolov and I. D. Novikov, Black Hole Physics (Kluwer Academic Publisher, Dordrecht, Netherlands, 1998).

[2] V. P. Frolov and A. Zernikov, Introduction to Black Hole Physics (Oxford University Press, New York, 2011).

[3] E. Teo, Spherical photon orbits around a Kerr black hole, Gen. Relativ. Gravit. 35, 1909 (2003).

[4] The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. I. The shadow of the super- massive black hole, Astrophys. J. 875, L1 (2019).

[5] The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. II. Array and instrumenta- tion, Astrophys. J. 875, L2 (2019).

[6] The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. III. Data processing and calibration, Astrophys. J. 875, L3 (2019).

[7] The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. IV. Imaging the central supermassive black hole, Astrophys. J. 875, L4 (2019).

[8] The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. V. Physical origin of the asymmetric ring, Astrophys. J. 875, L5 (2019).

[9] The Event Horizon Telescope Collaboration, First M87 event horizon telescope results. VI. The shadow and mass of the central black hole, Astrophys. J. 875, L6 (2019).

[10] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, England, 1999).

[11] E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, England, 2007).

[12] K. Sharma, Optics: Principles and Applications (Academic Press, Tokyo, 2006).

[13] S. W. Hawking, Black hole explosions?, Nature (London)248, 30 (1974).

[14] S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975).

[15] S. B. Giddings, Hawking radiation, the Stefan-Boltzmann law, and unitarization, Phys. Lett. B 754, 39 (2016).

[16] R. Dey, S. Liberati, and D. Pranzetti, The black hole quantum atmosphere, Phys. Lett. B 774, 308 (2017).

[17] K.-i. Kanai and Y. Nambu, Viewing black holes by waves, Classical Quant. Grav. 30, 175002 (2013).

[18] Y. Nambu and S. Noda, Wave optics in black hole space- times: The Schwarzschild case, Classical Quant. Grav. 33, 075011 (2016).

[19] W. G. W. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14, 870 (1976).

[20] P. Candelas, Vacuum polarization in Schwarzschild space- time, Phys. Rev. D 21, 2185 (1980).

[21] A. C. Ottewill and E. Winstanley, Renormalized stress tensor in Kerr space-time: General results, Phys. Rev. D 62, 084018 (2000).

[22] R. Gregory, I. G. Moss, N. Oshita, and S. Patrick, Black hole evaporation in de Sitter space, Classical Quant. Grav. 38, 185005 (2021).

[23] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, England, 1984).

[24] Y. Hatsuda, Quasinormal modes of Kerr-de Sitter black holes via the Heun function, Classical Quant. Grav. 38, 025015 (2021).

[25] B. Reznik, Entanglement from the vacuum, Found. Phys.33, 167 (2003).

[26] A. Pozas-Kerstjens and E. Martín-Martínez, Harvesting correlations from the quantum vacuum, Phys. Rev. D 92, 064042 (2015).

[27] L. J. Henderson, R. A. Hennigar, R. B. Mann, A. R. H. Smith, and J. Zhang, Harvesting entanglement from the black hole vacuum, Classical Quant. Grav. 35, 21LT02 (2018).

[28] Y. Nambu and Y. Ohsumi, Classical and quantum correla- tions of scalar field in the inflationary universe, Phys. Rev. D 84, 044028 (2011).

[29] A. Matsumura and Y. Nambu, Violation of Bell-CHSH inequalities through optimal local filters in the vacuum, Quantum Rep. 2, 542 (2020).

[30] G. Vidal and R. Werner, Computable measure of entangle- ment, Phys. Rev. A 65, 032314 (2002).

参考文献をもっと見る