リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tripartite entanglement of Hawking radiation in dispersive model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tripartite entanglement of Hawking radiation in dispersive model

Nambu, Yasusada Osawa, Yuki 名古屋大学

2021.06.15

概要

We investigate entanglement of the Hawking radiation in a dispersive model with subluminal dispersion. In this model, feature of the Hawking radiation is represented by three mode Bogoliubov transformation connecting the in-vacuum state and the out-state. We obtain the exact form of the tripartite in-vacuum state which encodes structure of multipartite entanglement. Bogoliubov coefficients are computed by numerical calculation of the wave equation with subluminal dispersion and it is found that genuine tripartite entanglement persists in whole frequency range up to the cutoff arisen from the subluminal dispersion. In the low frequency region, amount of the tripartite entanglement is far small compared to bipartite entanglement between the Hawking particle and its partner mode, and the deviation from the thermal spectrum is negligible. On the other hand, in the high frequency region near the cutoff, entanglement of the system is equally shared by two pairs of three modes, and the thermal nature of the Hawking radiation is lost.

この論文で使われている画像

参考文献

[1] S. W. Hawking, Black hole explosions?, Nature (London) 248, 30 (1974).

[2] S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975).

[3] W. Unruh, Sonic analogue of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D 51, 2827 (1995).

[4] R. Brout, S. Massar, R. Parentani, and P. Spindel, Hawking radiation without trans-Planckian frequencies, Phys. Rev. D 52, 4559 (1995).

[5] S. Corley and T. Jacobson, Hawking spectrum and high frequency dispersion., Phys. Rev. D 54, 1568 (1996).

[6] Y. Himemoto and T. Tanaka, Generalization of the model of Hawking radiation with modified high frequency dispersion relation, Phys. Rev. D 61, 064004 (2000).

[7] T. Jacobson, in Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect, Lect. Quantum Gravity (Springer-Verlag, New York, 2003), pp. 39–89.

[8] W. Unruh and R. Schützhold, Universality of the Hawking effect, Phys. Rev. D 71, 024028 (2005).

[9] J. Macher and R. Parentani, Black-hole radiation in Bose-Einstein condensates, Phys. Rev. A 80, 043601 (2009).

[10] J. Macher and R. Parentani, Black/white hole radiation from dispersive theories, Phys. Rev. D 79, 124008 (2009).

[11] S. J. Robertson, The theory of Hawking radiation in laboratory analogues, J. Phys. B 45, 163001 (2012).

[12] U. Leonhardt and S. Robertson, Analytical theory of Hawking radiation in dispersive media, New J. Phys. 14, 053003 (2012).

[13] A. Coutant, R. Parentani, and S. Finazzi, Black hole radiation with short distance dispersion, an analytical S-matrix approach, Phys. Rev. D 85, 024021 (2012).

[14] M. Hotta, R. Schützhold, and W. G. Unruh, Partner particles for moving mirror radiation and black hole evaporation, Phys. Rev. D 91, 124060 (2015).

[15] X. Busch and R. Parentani, Quantum entanglement in analogue Hawking radiation: When is the final state nonseparable?, Phys. Rev. D 89, 105024 (2014).

[16] A. Peres, Separability Criterion for Density Matrices, Phys. Rev. Lett. 77, 1413 (1996).

[17] P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition, Phys. Lett. A 232, 333 (1997).

[18] R. Simon, Peres-Horodecki Separability Criterion for Continuous Variable Systems, Phys. Rev. Lett. 84, 2726 (2000).

[19] P. R. Anderson, R. Balbinot, A. Fabbri, and R. Parentani, Gray-body factor and infrared divergences in 1D BEC acoustic black holes, Phys. Rev. D 90, 104044 (2014).

[20] P. R. Anderson, A. Fabbri, and R. Balbinot, Low frequency gray-body factors and infrared divergences: Rigorous results, Phys. Rev. D 91, 064061 (2015).

[21] A. Fabbri, R. Balbinot, and P. R. Anderson, Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: Exact results, Phys. Rev. D 93, 064046 (2016).

[22] A. Recati, N. Pavloff, and I. Carusotto, Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates, Phys. Rev. A 80, 043603 (2009).

[23] G. Giedke and B. Kraus, Gaussian local unitary equivalence of n -mode Gaussian states and Gaussian transformations by local operations with classical communication, Phys. Rev. A 89, 012335 (2014).

[24] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84, 621 (2012).

[25] G. Vidal and R. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).

[26] G. Adesso and F. Illuminati, Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems, New J. Phys. 8, 15 (2006).

[27] P. Kanti, J. Grain, and A. Barrau, Bulk and brane decay of a (4 þ n)-dimensional Schwarzschild-de Sitter black hole: Scalar radiation, Phys. Rev. D 71, 104002 (2005).

[28] M. Isoard, N. Milazzo, N. Pavloff, and O. Giraud, Bipartite and tripartite entanglement in a Bose-Einstein acoustic black hole, arXiv:2102.06175.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る