リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Zscan5b deficiency impairs DNA damage response and causes chromosomal aberrations during mitosis (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Zscan5b deficiency impairs DNA damage response and causes chromosomal aberrations during mitosis (本文)

小川, 誠司 慶應義塾大学

2021.03.08

概要

Zygotic genome activation (ZGA) begins after fertilization and is essential for establishing pluripotency and genome stability. However, it is unclear how ZGA genes prevent mitotic errors. Here we show that knockout of the ZGA gene Zscan5b, which encodes a SCAN domain with C2H2 zinc fingers, causes a high incidence of chromosomal abnormalities in embryonic stem cells (ESCs), and leads to the devel- opment of early-stage cancers. After irradiation, Zscan5b-deficient ESCs displayed significantly increased levels of g-H2AX despite increased expression of the DNA repair genes Rad51l3 and Bard. Re-expression of Zscan5b reduced g-H2AX content, implying a role for Zscan5b in DNA damage repair processes. A co-immunoprecipitation analysis showed that Zscan5b bound to the linker histone H1, suggesting that Zscan5b may protect chromosomal architecture. Our report demonstrates that the ZGA gene Zscan5b is involved in genomic integrity and acts to promote DNA damage repair and regulate chromatin dynamics during mitosis.

この論文で使われている画像

関連論文

参考文献

Balajee, A.S., and Geard, C.R. (2004). Replication protein A and gamma-H2AX foci assembly is triggered by cellular response to DNA double-strand breaks. Exp. Cell Res. 300, 320–334.

Boroviak, T., Stirparo, G.G., Dietmann, S., Hernando-Herraez, I., Mohammed, H., Reik, W., Smith, A., Sasaki, E., Nichols, J., and Ber- tone, P. (2018). Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent fea- tures of preimplantation development. Development 145. https:// doi.org/10.1242/dev.167833.

Capalbo, A., Bono, S., Spizzichino, L., Biricik, A., Baldi, M., Cola- maria, S., Ubaldi, F.M., Rienzi, L., and Fiorentino, F. (2013). Sequen- tial comprehensive chromosome analysis on polar bodies, blasto- meres and trophoblast: insights into female meiotic errors and chromosomal segregation in the preimplantation window of em- bryo development. Hum. Reprod. 28, 509–518.

Daphnis, D.D., Fragouli, E., Economou, K., Jerkovic, S., Craft, I.L., Delhanty, J.D., and Harper, J.C. (2008). Analysis of the evolution of chromosome abnormalities in human embryos from day 3 to 5 us- ing CGH and FISH. Mol. Hum. Reprod. 14, 117–125.

Demko, Z.P., Simon, A.L., McCoy, R.C., Petrov, D.A., and Rabino- witz, M. (2016). Effects of maternal age on euploidy rates in a large cohort of embryos analyzed with 24-chromosome single-nucleo- tide polymorphism-based preimplantation genetic screening. Fer- til. Steril. 105, 1307–1313.

Edelstein, L.C., and Collins, T. (2005). The SCAN domain family of zinc finger transcription factors. Gene 359, 1–17.

Egli, D., Birkhoff, G., and Eggan, K. (2008). Mediators of reprog- ramming: transcription factors and transitions through mitosis. Nat. Rev. Mol. Cell Biol. 9, 505–516.

Ellis, N.A., Ciocci, S., and German, J. (2001). Back mutation can produce phenotype reversion in Bloom syndrome somatic cells. Hum. Genet. 108, 167–173.

Falco, G., Stanghellini, I., and Ko, M.S. (2006). Use of Chuk as an internal standard suitable for quantitative RT-PCR in mouse preim- plantation embryos. Reprod. Biomed. Online 13, 394–403.

Falco, G., Lee, S.L., Stanghellini, I., Bassey, U.C., Hamatani, T., and Ko, M.S. (2007). Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 307, 539–550.

Forget, A.L., and Kowalczykowski, S.C. (2010). Single-molecule im- aging brings Rad51 nucleoprotein filaments into focus. Trends Cell Biol. 20, 269–276.

Fukawatase, Y., Toyoda, M., Okamura, K., Nakamura, K., Nakabaya- shi, K., Takada, S., Yamazaki-Inoue, M., Masuda, A., Nasu, M., Hata, K., et al. (2014). Ataxia telangiectasia derived iPS cells show pre- served X-ray sensitivity and decreased chromosomal instability. Sci. Rep. 4, 5421.

Hamatani, T., Carter, M.G., Sharov, A.A., and Ko, M.S. (2004). Dy- namics of global gene expression changes during mouse preim- plantation development. Dev. Cell 6, 117–131.

Harper, J.C., Coonen, E., Handyside, A.H., Winston, R.M., Hop- man, A.H., and Delhanty, J.D. (1995). Mosaicism of autosomes and sex chromosomes in morphologically normal, monospermic preimplantation human embryos. Prenat. Diagn. 15, 41–49.

Hashimoto, H., Takami, Y., Sonoda, E., Iwasaki, T., Iwano, H., Ta- chibana, M., Takeda, S., Nakayama, T., Kimura, H., and Shinkai, Y. (2010). Histone H1 null vertebrate cells exhibit altered nucleo- some architecture. Nucleic Acids Res. 38, 3533–3545.

Hassold, T., and Hunt, P. (2001). To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291.

Ikawa, M., Yamada, S., Nakanishi, T., and Okabe, M. (1999). Green fluorescent protein (GFP) as a vital marker in mammals. Curr. Top. Dev. Biol. 44, 1–20.

Kort, D.H., Chia, G., Treff, N.R., Tanaka, A.J., Xing, T., Vensand, L.B., Micucci, S., Prosser, R., Lobo, R.A., Sauer, M.V., et al. (2016). Human embryos commonly form abnormal nuclei during devel- opment: a mechanism of DNA damage, embryonic aneuploidy, and developmental arrest. Hum. Reprod. 31, 312–323.

Kosugi, S., Hasebe, M., Tomita, M., and Yanagawa, H. (2009). Sys- tematic identification of cell cycle-dependent yeast nucleocyto- plasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. U S A 106, 10171–10176.

Mamo, S., Gal, A.B., Bodo, S., and Dinnyes, A. (2007). Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev. Biol. 7, 14.

McCoy, R.C. (2017). Mosaicism in preimplantation human em- bryos: when chromosomal abnormalities are the norm. Trends Genet. 33, 448–463.

McCoy, R.C., Demko, Z.P., Ryan, A., Banjevic, M., Hill, M., Sigur- jonsson, S., Rabinowitz, M., and Petrov, D.A. (2015). Evidence of selection against complex mitotic-origin aneuploidy during preim- plantation development. PLoS Genet. 11, e1005601.

Nagy, A., Gertsenstein, M., Vintersten, K., and Behringer, R. (2003). Manipulating the Mouse Embryo: A Laboratory Manual, Third Edi- tion (Cold Spring Harbor Laboratory).

Niwa, H., Yamamura, K., and Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.

Noggle, S., Fung, H.L., Gore, A., Martinez, H., Satriani, K.C., Prosser, R., Oum, K., Paull, D., Druckenmiller, S., Freeby, M., et al. (2011). Human oocytes reprogram somatic cells to a pluripo- tent state. Nature 478, 70–75.

Rubio, C., Rodrigo, L., Mercader, A., Mateu, E., Buendia, P., Pehli- van, T., Viloria, T., De los Santos, M.J., Simon, C., Remohi, J., et al. (2007). Impact of chromosomal abnormalities on preimplan- tation embryo development. Prenat. Diagn. 27, 748–756.

Sassi, A., Popielarski, M., Synowiec, E., Morawiec, Z., and Wozniak, K. (2013). BLM and RAD51 genes polymorphism and susceptibility to breast cancer. Pathol. Oncol. Res. 19, 451–459.

Schmitges, F.W., Radovani, E., Najafabadi, H.S., Barazandeh, M., Campitelli, L.F., Yin, Y., Jolma, A., Zhong, G., Guo, H., Kanagalingam, T., et al. (2016). Multiparameter functional diver- sity of human C2H2 zinc finger proteins. Genome Res. 26, 1742– 1752.

Schultz, J., Milpetz, F., Bork, P., and Ponting, C.P. (1998). SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. U S A 95, 5857–5864.

Skamagki, M., Correia, C., Yeung, P., Baslan, T., Beck, S., Zhang, C., Ross, C.A., Dang, L., Liu, Z., Giunta, S., et al. (2017). ZSCAN10 expression corrects the genomic instability of iPSCs from aged do- nors. Nat. Cell Biol. 19, 1037–1048.

Sonoda, E., Sasaki, M.S., Buerstedde, J.M., Bezzubova, O., Shino- hara, A., Ogawa, H., Takata, M., Yamaguchi-Iwai, Y., and Takeda, S. (1998). Rad51-deficient vertebrate cells accumulate chromo- somal breaks prior to cell death. EMBO J. 17, 598–608.

Sun, Y., Zhang, H., Kazemian, M., Troy, J.M., Seward, C., Lu, X., and Stubbs, L. (2016). ZSCAN5B and primate-specific paralogs bind RNA polymerase III genes and extra-TFIIIC (ETC) sites to modulate mitotic progression. Oncotarget 7, 72571–72592.

van Gent, D.C., Hoeijmakers, J.H., and Kanaar, R. (2001). Chromo- somal stability and the DNA double-stranded break connection. Nat. Rev. Genet. 2, 196–206.

Vanneste, E., Voet, T., Le Caignec, C., Ampe, M., Konings, P., Me- lotte, C., Debrock, S., Amyere, M., Vikkula, M., Schuit, F., et al. (2009). Chromosome instability is common in human cleavage- stage embryos. Nat. Med. 15, 577–583.

Wang, Q.T., Piotrowska, K., Ciemerych, M.A., Milenkovic, L., Scott, M.P., Davis, R.W., and Zernicka-Goetz, M. (2004). A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144.

Willis, N.A., Frock, R.L., Menghi, F., Duffey, E.E., Panday, A., Cama-cho, V., Hasty, E.P., Liu, E.T., Alt, F.W., and Scully, R. (2017). Mech- anism of tandem duplication formation in BRCA1-mutant cells. Nature 551, 590–595.

Yamada, M., Hamatani, T., Akutsu, H., Chikazawa, N., Kuji, N., Yoshimura, Y., and Umezawa, A. (2010). Involvement of a novel preimplantation-specific gene encoding the high mobility group box protein Hmgpi in early embryonic development. Hum. Mol. Genet. 19, 480–493.

Yamada, M., Johannesson, B., Sagi, I., Burnett, L.C., Kort, D.H., Prosser, R.W., Paull, D., Nestor, M.W., Freeby, M., Greenberg, E., et al. (2014). Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 510, 533–536.

Zalzman, M., Falco, G., Sharova, L.V., Nishiyama, A., Thomas, M., Lee, S.L., Stagg, C.A., Hoang, H.G., Yang, H.T., Indig, F.E., et al. (2010). Zscan4 regulates telomere elongation and genomic stabil- ity in ES cells. Nature 464, 858–863.

Zhao, W., Steinfeld, J.B., Liang, F., Chen, X., Maranon, D.G., Jian Ma, C., Kwon, Y., Rao, T., Wang, W., Sheng, C., et al. (2017). BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing. Nature 550, 360–365.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る