リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Telencephalon Organoids Derived from an Individual with ADHD Show Altered Neurodevelopment of Early Cortical Layer Structure」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Telencephalon Organoids Derived from an Individual with ADHD Show Altered Neurodevelopment of Early Cortical Layer Structure

Zhang, Danmeng Eguchi, Noriomi Okazaki, Satoshi Sora, Ichiro Hishimoto, Akitoyo 神戸大学

2023.07

概要

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that occurs in early childhood and can persist to adulthood. It can affect many aspects of a patient's daily life, so it is necessary to explore the mechanism and pathological alterations. For this purpose, we applied induced pluripotent stem cell (iPSC)-derived telencephalon organoids to recapitulate the alterations occurring in the early cerebral cortex of ADHD patients. We found that telencephalon organoids of ADHD showed less growth of layer structures than control-derived organoids. On day 35 of differentiation, the thinner cortex layer structures of ADHD-derived organoids contained more neurons than those of control-derived organoids. Furthermore, ADHD-derived organoids showed a decrease in cell proliferation during development from day 35 to 56. On day 56 of differentiation, there was a significant difference in the proportion of symmetric and asymmetric cell division between the ADHD and control groups. In addition, we observed increased cell apoptosis in ADHD during early development. These results show alterations in the characteristics of neural stem cells and the formation of layer structures, which might indicate key roles in the pathogenesis of ADHD. Our organoids exhibit the cortical developmental alterations observed in neuroimaging studies, providing an experimental foundation for understanding the pathological mechanisms of ADHD.

この論文で使われている画像

参考文献

1. Agnew-Blais, J. C., Polanczyk, G. V., Danese, A., Wertz, J., Moffitt, T. E., & Arseneault, L. (2016). Evaluation of the persistence,

remission, and emergence of attention-deficit/hyperactivity disorder in young adulthood. JAMA Psychiatry, 73(7), 713–720.

https://​doi.​org/​10.​1001/​jamap​sychi​atry.​2016.​0465

2. Hinshaw, S. P. (2018). Attention Deficit Hyperactivity

Disorder (ADHD): Controversy, developmental mechanisms,

and multiple levels of analysis. Annual Review of Clinical

Psychology, 14, 291–316. https://​doi.​org/​10.​1146/​annur​ev-​clinp​

sy-​050817-​084917

3. Faraone, S. V., Asherson, P., Banaschewski, T., Biederman, J.,

Buitelaar, J. K., Ramos-Quiroga, J. A., Rohde, L. A., SonugaBarke, E. J. S., Tannock, R., & Franke, B. (2015). Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 1(1),

15020. https://​doi.​org/​10.​1038/​nrdp.​2015.​20

1489

4. Nourredine, M., Gering, A., Fourneret, P., Rolland, B., Falissard,

B., Cucherat, M., Geoffray, M. M., & Jurek, L. (2021). Association of attention-deficit/hyperactivity disorder in childhood and

adolescence with the risk of subsequent psychotic disorder: A

systematic review and meta-analysis. JAMA Psychiatry, 78(5),

519–529. https://​doi.​org/​10.​1001/​jamap​sychi​atry.​2020.​4799

5. Lee, P. H., Anttila, V., Won, H., Feng, Y.-C. A., Rosenthal, J.,

Zhu, Z., Tucker-Drob, E. M., Nivard, M. G., Grotzinger, A. D.,

Posthuma, D., Wang, M. M. J., Yu, D., Stahl, E. A., Walters,

R. K., Anney, R. J. L., Duncan, L. E., Ge, T., Adolfsson, R.,

Banaschewski, T., . . . Smoller, J. W. (2019). Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell, 179(7), 1469–1482.e11. https://​doi.​org/​10.​

1016/j.​cell.​2019.​11.​020

6. Thapar, A. (2018). Discoveries on the genetics of ADHD in the

21st century: New findings and their implications. The American

Journal of Psychiatry, 175(10), 943–950. https://d​ oi.o​ rg/1​ 0.1​ 176/​

appi.​ajp.​2018.​18040​383

7. Gallo, E. F., & Posner, J. (2016). Moving towards causality in

attention-deficit hyperactivity disorder: Overview of neural and

genetic mechanisms. The Lancet Psychiatry, 3(6), 555–567.

https://​doi.​org/​10.​1016/​s2215-​0366(16)​00096-1

8. Liao, C., Laporte, A. D., Spiegelman, D., Akçimen, F., Joober, R.,

Dion, P. A., & Rouleau, G. A. (2019). Transcriptome-wide association study of attention deficit hyperactivity disorder identifies

associated genes and phenotypes. Nature Communications, 10(1),

4450. https://​doi.​org/​10.​1038/​s41467-​019-​12450-9

9. Ball, G., Malpas, C. B., Genc, S., Efron, D., Sciberras, E., Anderson, V., Nicholson, J. M., & Silk, T. J. (2018). Multimodal structural neuroimaging markers of brain development and ADHD

symptoms. American Journal of Psychiatry, 176(1), 57–66.

https://​doi.​org/​10.​1176/​appi.​ajp.​2018.​18010​034

10. Bernanke, J., Luna, A., Chang, L., Bruno, E., Dworkin, J., & Posner, J. (2022). Structural brain measures among children with and

without ADHD in the adolescent brain and cognitive development

study cohort: A cross-sectional US population-based study. The

Lancet Psychiatry, 9(3), 222–231. https://d​ oi.o​ rg/1​ 0.1​ 016/S

​ 2215-​

0366(21)​00505-8

11. Arnsten, A. F. T., & Rubia, K. (2012). Neurobiological circuits

regulating attention, cognitive control, motivation, and emotion:

Disruptions in neurodevelopmental psychiatric disorders. Journal of the American Academy of Child & Adolescent Psychiatry,

51(4), 356–367. https://​doi.​org/​10.​1016/j.​jaac.​2012.​01.​008

12. Dark, C., Homman-Ludiye, J., & Bryson-Richardson, R. J.

(2018). The role of ADHD associated genes in neurodevelopment.

Developmental Biology, 438(2), 69–83. https://​doi.​org/​10.​1016/j.​

ydbio.​2018.​03.​023

13. El-Sayed, E., Larsson, J. O., Persson, H. E., Santosh, P. J., &

Rydelius, P. A. (2003). “Maturational lag” hypothesis of attention

deficit hyperactivity disorder: An update. Acta Paediatrica, 92(7),

776–784.

14. Hoogman, M., Muetzel, R., Guimaraes, J. P., Shumskaya, E., Mennes,

M., Zwiers, M. P., Jahanshad, N., Sudre, G., Wolfers, T., Earl, E. A.,

Soliva Vila, J. C., Vives-Gilabert, Y., Khadka, S., Novotny, S. E.,

Hartman, C. A., Heslenfeld, D. J., Schweren, L. J. S., Ambrosino,

S., Oranje, B., . . . Franke, B. (2019). Brain imaging of the cortex

in ADHD: A coordinated analysis of large-scale clinical and population-based samples. The American Journal of Psychiatry, 176(7),

531–542. https://​doi.​org/​10.​1176/​appi.​ajp.​2019.​18091​033

15. Norman, L. J., Carlisi, C., Lukito, S., Hart, H., Mataix-Cols, D.,

Radua, J., & Rubia, K. (2016). Structural and functional brain

abnormalities in attention-deficit/hyperactivity disorder and

obsessive-compulsive disorder: A comparative meta-analysis. JAMA

Psychiatry, 73(8), 815–825. https://​doi.​org/​10.​1001/​jamap​sychi​atry.​

2016.​0700

13

1490

16. Shaw, P., Malek, M., Watson, B., Greenstein, D., de Rossi, P., &

Sharp, W. (2013). Trajectories of cerebral cortical development in

childhood and adolescence and adult attention-deficit/hyperactivity disorder. Biological Psychiatry, 74(8), 599–606. https://​doi.​

org/​10.​1016/j.​biops​ych.​2013.​04.​007

17. Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P.,

Greenstein, D., Clasen, L., Evans, A., Giedd, J., & Rapoport, J.

L. (2007). Attention-deficit/hyperactivity disorder is characterized

by a delay in cortical maturation. Proceedings of the National

Academy of Sciences of the United States of America, 104(49),

19649–19654. https://​doi.​org/​10.​1073/​pnas.​07077​41104

18. Writing Committee for the Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, Bipolar Disorder, Major Depressive Disorder, Obsessive-Compulsive Disorder, and Schizophrenia

Enigma Working Groups, Patel, Y., Parker, N., Shin, J., Howard,

D., French, L., Thomopoulos, S. I., Pozzi, E., Abe, Y., Abé, C.,

Anticevic, A., Alda, M., Aleman, A., Alloza, C., . . . Paus, T.

(2021). Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders. JAMA Psychiatry, 78(1), 47–63.

https://​doi.​org/​10.​1001/​jamap​sychi​atry.​2020.​2694

19. de la Peña, J. B., dela Peña, I. J., Custodio, R. J., Botanas, C. J.,

Kim, H. J., & Cheong, J. H. (2018). Exploring the validity of proposed transgenic animal models of attention-deficit hyperactivity

disorder (ADHD). Molecular Neurobiology, 55(5), 3739–3754.

https://​doi.​org/​10.​1007/​s12035-​017-​0608-1

20 Kantak, K. M. (2022). Rodent models of attention-deficit

hyperactivity disorder: An updated framework for model

validation and therapeutic drug discovery. Pharmacology

Biochemistry and Behavior, 216, 173378. https://​doi.​org/​10.​

1016/j.​pbb.​2022.​173378

21. Eglen, R. M., & Reisine, T. (2018). Human iPS cell-derived patient

tissues and 3D cell culture part 1: Target identification and lead

optimization. SLAS Technology: Translating Life Sciences Innovation, 24(1), 3–17. https://​doi.​org/​10.​1177/​24726​30318​803277

22. Eglen, R. M., & Reisine, T. (2019). Human iPS cell-derived

patient tissues and 3D cell culture part 2: Spheroids, organoids,

and disease modeling. SLAS Technology, 24(1), 18–27. https://​

doi.​org/​10.​1177/​24726​30318​803275

23. Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando,

S., Eiraku, M., & Sasai, Y. (2013). Self-organization of axial

polarity, inside-out layer pattern, and species-specific progenitor

dynamics in human ES cell-derived neocortex. Proceedings

of the National Academy of Sciences of the United States of

America, 110(50), 20284–20289. https://​doi.​org/​10.​1073/​pnas.​

13157​10110

24. Eguchi, N., Sora, I., & Muguruma, K. (2018). Self-organizing

cortex generated from human iPSCs with combination of FGF2

and ambient oxygen. Biochemical and Biophysical Research

Communications, 498(4), 729–735. https://​doi.​org/​10.​1016/j.b​ brc.​

2018.​03.​049

25. Seki, T., Yuasa, S., Oda, M., Egashira, T., Yae, K., Kusumoto, D.,

Nakata, H., Tohyama, S., Hashimoto, H., Kodaira, M., Okada,

Y., Seimiya, H., Fusaki, N., Hasegawa, M., & Fukuda, K. (2010).

Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell, 7(1),

11–14. https://​doi.​org/​10.​1016/j.​stem.​2010.​06.​003

26. Barui, A., & Datta, P. (2019). Biophysical factors in the regulation

of asymmetric division of stem cells. Biological Reviews, 94(3),

810–827. https://​doi.​org/​10.​1111/​brv.​12479

27. Zhong, W., & Chia, W. (2008). Neurogenesis and asymmetric cell

division. Current Opinion in Neurobiology, 18(1), 4–11. https://​

doi.​org/​10.​1016/j.​conb.​2008.​05.​002

28. Arlotta, P., & Paşca, S. P. (2019). Cell diversity in the human cerebral

cortex: From the embryo to brain organoids. Current Opinion in Neurobiology, 56, 194–198. https://​doi.​org/​10.​1016/j.​conb.​2019.​03.​001

13

Stem Cell Reviews and Reports (2023) 19:1482–1491

29. Eremeev, A. V., Lebedeva, O. S., Bogomiakova, M. E., Lagarkova,

M. A., & Bogomazova, A. N. (2021). Cerebral organoids-challenges to establish a brain prototype. Cells, 10(7), 1790. https://​

doi.​org/​10.​3390/​cells​10071​790

30 Jabaudon, D., & Lancaster, M. (2018). Exploring landscapes

of brain morphogenesis with organoids. Development, 145(22),

dev172049. https://​doi.​org/​10.​1242/​dev.​172049

31. Giedd, J. N. (2019). The enigma of neuroimaging in ADHD. The

American Journal of Psychiatry, 176(7), 503–504. https://d​ oi.o​ rg/​

10.​1176/​appi.​ajp.​2019.​19050​540

32. Hess, J. L., Radonjić, N. V., Patak, J., Glatt, S. J., & Faraone, S.

V. (2021). Autophagy, apoptosis, and neurodevelopmental genes

might underlie selective brain region vulnerability in attentiondeficit/hyperactivity disorder. Molecular Psychiatry, 26(11),

6643–6654. https://​doi.​org/​10.​1038/​s41380-​020-​00974-2

33. Franke, B. (2017). Neuroimaging findings in ADHD and the role

of genetics. European Psychiatry, 41, S44. https://​doi.​org/​10.​

1016/j.​eurpsy.​2017.​01.​194

34. Lawrie, S. M. (2020). Translational neuroimaging of ADHD and

related neurodevelopmental disorders. The World Journal of Biological Psychiatry, 21(9), 659–661. https://d​ oi.o​ rg/1​ 0.1​ 080/1​ 5622​

975.​2020.​18236​94

35. Allende, M. L., Cook, E. K., Larman, B. C., Nugent, A., Brady, J.

M., Golebiowski, D., Sena-Esteves, M., Tifft, C. J., & Proia, R. L.

(2018). Cerebral organoids derived from Sandhoff disease-induced

pluripotent stem cells exhibit impaired neurodifferentiation. Journal

of Lipid Research, 59(3), 550–563. https://​doi.​org/​10.​1194/​jlr.​

M0813​23

36. Luo, C., Lancaster, M. A., Castanon, R., Nery, J. R., Knoblich, J.

A., & Ecker, J. R. (2016). Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Reports, 17(12),

3369–3384. https://​doi.​org/​10.​1016/j.​celrep.​2016.​12.​001

37. Mariani, J., Coppola, G., Zhang, P., Abyzov, A., Provini, L.,

Tomasini, L., Amenduni, M., Szekely, A., Palejev, D., Wilson,

M., Gerstein, M., Grigorenko, E. L., Chawarska, K., Pelphrey,

K. A., Howe, J. R., & Vaccarino, F. M. (2015). FOXG1-dependent dysregulation of GABA/Glutamate neuron differentiation in

autism spectrum disorders. Cell, 162(2), 375–390. https://d​ oi.o​ rg/​

10.​1016/j.​cell.​2015.​06.​034

38. Ribasés, M., Hervás, A., Ramos-Quiroga, J. A., Bosch, R., Bielsa,

A., Gastaminza, X., Fernández-Anguiano, M., Nogueira, M.,

Gómez-Barros, N., Valero, S., Gratacòs, M., Estivill, X., Casas,

M., Cormand, B., & Bayés, M. (2008). Association study of 10

genes encoding neurotrophic factors and their receptors in adult

and child attention-deficit/hyperactivity disorder. Biological

Psychiatry, 63(10), 935–945. https://​doi.​org/​10.​1016/j.​biops​ych.​

2007.​11.​004

39. Rivero, O., Sich, S., Popp, S., Schmitt, A., Franke, B., & Lesch,

K. P. (2013). Impact of the ADHD-susceptibility gene CDH13

on development and function of brain networks. European Neuropsychopharmacology, 23(6), 492–507. https://d​ oi.o​ rg/1​ 0.1​ 016/j.​

euron​euro.​2012.​06.​009

40. Alves, C. B., Almeida, A. S., Marques, D. M., Faé, A. H. L.,

Machado, A. C. L., Oliveira, D. L., Portela, L. V. C., & Porciúncula,

L. O. (2020). Caffeine and adenosine A(2A) receptors rescue neuronal development in vitro of frontal cortical neurons in a rat model

of attention deficit and hyperactivity disorder. Neuropharmacology,

166, 107782. https://​doi.​org/​10.​1016/j.​neuro​pharm.​2019.​107782

41. Usui, N., Tian, X., Harigai, W., Togawa, S., Utsunomiya, R., Doi,

T., Miyoshi, K., Shinoda, K., Tanaka, J., Shimada, S., Katayama,

T., & Yoshimura, T. (2022). Length impairments of the axon

initial segment in rodent models of attention-deficit hyperactivity

disorder and autism spectrum disorder. Neurochemistry

International, 153, 105273. https://​doi.​org/​10.​1016/j.​neuint.​

2021.​105273

Stem Cell Reviews and Reports (2023) 19:1482–1491 42. Yuan, H., Ni, X., Zheng, M., Han, X., Song, Y., & Yu, M. (2019).

Effect of catalpol on behavior and neurodevelopment in an ADHD

rat model. Biomedicine & Pharmacotherapy, 118, 109033. https://​

doi.​org/​10.​1016/j.​biopha.​2019.​109033

43. Kasahara, Y., Arime, Y., Hall, F. S., Uhl, G. R., & Sora, I. (2015).

Region-specific dendritic spine loss of pyramidal neurons in dopamine transporter knockout mice. Current Molecular Medicine, 15(3),

237–244. https://​doi.​org/​10.​2174/​15665​24015​66615​03301​43613

44. Fietz, S. A., & Huttner, W. B. (2011). Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Current Opinion in Neurobiology, 21(1), 23–35. https://​doi.​org/​10.​

1016/j.​conb.​2010.​10.​002

45. Namba, T., & Huttner, W. B. (2017). Neural progenitor cells and

their role in the development and evolutionary expansion of the

neocortex. Wiley Interdisciplinary Reviews. Developmental Biology, 6(1). https://​doi.​org/​10.​1002/​wdev.​256

1491

46. Xing, L., Wilsch-Bräuninger, M., & Huttner, W. B. (2021). How

neural stem cells contribute to neocortex development. Biochemical Society Transactions, 49(5), 1997–2006. https://​doi.​org/​10.​

1042/​bst20​200923

47. Casas Gimeno, G., & Paridaen, J. (2022). The symmetry of neural

stem cell and progenitor divisions in the vertebrate brain. Frontiers in Cell and Developmental Biology, 10, 885269. https://​doi.​

org/​10.​3389/​fcell.​2022.​885269

48. Delaunay, D., Kawaguchi, A., Dehay, C., & Matsuzaki, F. (2017).

Division modes and physical asymmetry in cerebral cortex progenitors. Current Opinion in Neurobiology, 42, 75–83. https://d​ oi.​

org/​10.​1016/j.​conb.​2016.​11.​009

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る