リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Isolation, Genomic Sequence and Physiological Characterization of Parageobacillus sp. G301, an Isolate Capable of Both Hydrogenogenic and Aerobic Carbon Monoxide Oxidation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Isolation, Genomic Sequence and Physiological Characterization of Parageobacillus sp. G301, an Isolate Capable of Both Hydrogenogenic and Aerobic Carbon Monoxide Oxidation

Imaura, Yoshinari Okamoto, Shunsuke Hino, Taiki Ogami, Yusuke Katayama, Yuka Adachi Tanimura, Ayumi Inoue, Masao Kamikawa, Ryoma Yoshida, Takashi Sako, Yoshihiko 京都大学 DOI:10.1128/aem.00185-23

2023.06.28

概要

Prokaryotes that can oxidize carbon monoxide (CO oxidizers) can use this gas as a source of carbon or energy. They oxidize carbon monoxide with carbon monoxide dehydrogenases (CODHs): these are divided into nickel-containing CODH (Ni-CODH), which are sensitive to O₂, and molybdenum-containing CODH (Mo-CODH), which can function aerobically. The oxygen conditions required for CO oxidizers to oxidize CO may be limited, as those which have been isolated and characterized so far contain either Ni- or Mo-CODH. Here, we report a novel CO oxidizer, Parageobacillus sp. G301, which is capable of CO oxidation using both types of CODH based on genomic and physiological characterization. This thermophilic, facultatively anaerobic Bacillota bacterium was isolated from the sediments of a freshwater lake. Genomic analyses revealed that strain G301 possessed both Ni-CODH and Mo-CODH. Genome-based reconstruction of its respiratory machinery and physiological investigations indicated that CO oxidation by Ni-CODH was coupled with H₂ production (proton reduction), whereas CO oxidation by Mo-CODH was coupled with O₂ reduction under aerobic conditions and nitrate reduction under anaerobic conditions. G301 would thus be able to thrive via CO oxidation under a wide range of conditions, from aerobic environments to anaerobic environments, even with no terminal electron acceptors other than protons. Comparative genome analyses revealed no significant differences in genome structures and encoded cellular functions, except for CO oxidation between CO oxidizers and non-CO oxidizers in the genus Parageobacillus; CO oxidation genes are retained exclusively for CO metabolism and related respiration.

参考文献

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Proc Natl Acad Sci U S A 116:6329–6334. https://doi.org/10.1073/pnas

.1818580116.

Schut GJ, Lipscomb GL, Nguyen DMN, Kelly RM, Adams MWW. 2016. Heterologous production of an energy-conserving carbon monoxide dehydrogenase complex in the hyperthermophile Pyrococcus furiosus. Front

Microbiol 7:29. https://doi.org/10.3389/fmicb.2016.00029.

King GM. 2003. Molecular and culture-based analyses of aerobic carbon

monoxide oxidizer diversity. Appl Environ Microbiol 69:7257–7265. https://

doi.org/10.1128/AEM.69.12.7257-7265.2003.

Cunliffe M. 2011. Correlating carbon monoxide oxidation with cox genes

in the abundant Marine Roseobacter Clade. ISME J 5:685–691. https://doi

.org/10.1038/ismej.2010.170.

Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB,

King GM, Greening C. 2019. Atmospheric carbon monoxide oxidation is a

widespread mechanism supporting microbial survival. ISME J 13:2868–2881.

https://doi.org/10.1038/s41396-019-0479-8.

Cypionka H, Verseveld HW, Stouthamer AH. 1984. Proton translocation

coupled to carbon monoxide-insensitive and -sensitive electron transport in

Pseudomonas carboxydovorans. FEMS Microbiol Lett 22:209–213. https://doi

.org/10.1111/j.1574-6968.1984.tb00728.x.

Nanba K, King GM, Dunfield K. 2004. Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of

ribulose 1,5-bisphosphate carboxylase/oxygenase. Appl Environ Microbiol 70:2245–2253. https://doi.org/10.1128/AEM.70.4.2245-2253.2004.

Santiago B, Schübel U, Egelseer C, Meyer O. 1999. Sequence analysis,

characterization and CO-specific transcription of the cox gene cluster on

the megaplasmid pHCG3 of Oligotropha carboxidovorans. Gene 236:

115–124. https://doi.org/10.1016/s0378-1119(99)00245-0.

Merrouch M, Hadj-Saïd J, Domnik L, Dobbek H, Léger C, Dementin S, Fourmond

V. 2015. O2 inhibition of Ni-containing CO dehydrogenase is partly reversible.

Chemistry 21:18934–18938. https://doi.org/10.1002/chem.201502835.

Sokolova TG, Yakimov MM, Chernyh NA, Lun’kova E, Kostrikina NA,

Taranov EA, Lebedinskii AV, Bonch-Osmolovskaya EA. 2017. Aerobic carbon monoxide oxidation in the course of growth of a hyperthermophilic

archaeon, Sulfolobus sp. ETSY. Microbiology 86:539–548. https://doi.org/

10.1134/S0026261717050174.

Omae K, Fukuyama Y, Yasuda H, Mise K, Yoshida T, Sako Y. 2019. Diversity

and distribution of thermophilic hydrogenogenic carboxydotrophs revealed

by microbial community analysis in sediments from multiple hydrothermal

environments in Japan. Arch Microbiol 201:969–982. https://doi.org/10.1007/

s00203-019-01661-9.

Artuso I, Turrini P, Pirolo M, Lucidi M, Tescari M, Visaggio D, Mansi A, Lugli

GA, Ventura M, Visca P. 2021. Phylogenomic analysis and characterization of

carbon monoxide utilization genes in the family Phyllobacteriaceae with

reclassification of Aminobacter carboxidus (Meyer et al. 1993, Hördt et al.

2020) as Aminobacter lissarensis comb. nov. (McDonald et al. 2005). Syst Appl

Microbiol 44:126199. https://doi.org/10.1016/j.syapm.2021.126199.

Coorevits A, Dinsdale AE, Halket G, Lebbe L, De Vos P, Van Landschoot A,

Logan NA. 2012. Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly ‘thermoglucosidasius’); transfer of Bacillus thermantarcticus to the genus as G.

thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov.,

comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans

comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J

Syst Evol Microbiol 62:1470–1485. https://doi.org/10.1099/ijs.0.030346-0.

Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P. 2016. Phylogenomic reassessment of the thermophilic genus Geobacillus. Syst Appl Microbiol

39:527–533. https://doi.org/10.1016/j.syapm.2016.09.004.

Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P. 2018. Corrigendum to

“Phylogenomic re-assessment of the thermophilic genus Geobacillus”

[Syst. Appl. Microbiol. 39 (2016) 527–533]. Syst Appl Microbiol 41:

529–530. https://doi.org/10.1016/j.syapm.2018.07.001.

Najar IN, Thakur N. 2020. A systematic review of the genera Geobacillus and

Parageobacillus: their evolution, current taxonomic status and major applications. Microbiology (Reading) 166:800–816. https://doi.org/10.1099/mic.0

.000945.

Madhaiyan M, Saravanan VS, See-Too W-S. 2020. Genome based analyses

reveals the presence of heterotypic synonyms and subspecies in Bacteria

and Archaea. bioRxiv. https://doi.org/10.1101/2020.12.13.418756.

Mohr T, Aliyu H, Küchlin R, Polliack S, Zwick M, Neumann A, Cowan D, de

Maayer P. 2018. CO-dependent hydrogen production by the facultative

anaerobe Parageobacillus thermoglucosidasius. Microb Cell Fact 17:108.

https://doi.org/10.1186/s12934-018-0954-3.

June 2023 Volume 89 Issue 6

Applied and Environmental Microbiology

39. Mohr T, Aliyu H, Küchlin R, Zwick M, Cowan D, Neumann A, de Maayer P.

2018. Comparative genomic analysis of Parageobacillus thermoglucosidasius strains with distinct hydrogenogenic capacities. BMC Genomics 19:

880. https://doi.org/10.1186/s12864-018-5302-9.

40. Inoue M, Tanimura A, Ogami Y, Hino T, Okunishi S, Maeda H, Yoshida T,

Sako Y. 2019. Draft genome sequence of Parageobacillus thermoglucosidasius strain TG4, a hydrogenogenic carboxydotrophic bacterium isolated from a marine sediment. Microbiol Resour Announc 8:e01666-18.

https://doi.org/10.1128/MRA.01666-18.

41. Adachi Y. 2021. Genetic engineering of carbon monoxide-dependent

hydrogen-producing machinery in Parageobacillus thermoglucosidasius.

Microbes Environ 35:ME20101.

42. Yamamura H, Hayashi T, Hamada M, Kohda T, Serisawa Y, MatsuyamaSerisawa K, Nakagawa Y, Otoguro M, Yanagida F, Tamura T, Hayakawa M.

2019. Cellulomonas algicola sp. nov., an actinobacterium isolated from a

freshwater alga. Int J Syst Evol Microbiol 69:2723–2728. https://doi.org/10

.1099/ijsem.0.003549.

43. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N,

Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D,

Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R,

Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H,

Stevens RL. 2017. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 45:

D535–D542. https://doi.org/10.1093/nar/gkw1017.

44. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R,

Leipe D, Mcveigh R, O’Neill K, Robbertse B, Sharma S, Soussov V, Sullivan

JP, Sun L, Turner S, Karsch-Mizrachi I. 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020:baaa062.

https://doi.org/10.1093/database/baaa062.

45. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018.

High throughput ANI analysis of 90K prokaryotic genomes reveals clear

species boundaries. Nat Commun 9:5114. https://doi.org/10.1038/s41467

-018-07641-9.

46. Tanizawa Y, Fujisawa T, Nakamura Y. 2018. DFAST: a flexible prokaryotic

genome annotation pipeline for faster genome publication. Bioinformatics 34:1037–1039. https://doi.org/10.1093/bioinformatics/btx713.

47. Søndergaard D, Pedersen CNS, Greening C. 2016. HydDB: a web tool for

hydrogenase classification and analysis. Sci Rep 6:34212. https://doi.org/

10.1038/srep34212.

48. Winstedt L, Yoshida K-I, Fujita Y, von Wachenfeldt C. 1998. Cytochrome bd

biosynthesis in Bacillus subtilis: characterization of the cydABCD operon. J Bacteriol 180:6571–6580. https://doi.org/10.1128/JB.180.24.6571-6580.1998.

49. Magalon A, Fedor JG, Walburger A, Weiner JH. 2011. Molybdenum enzymes

in bacteria and their maturation. Coord Chem Rev 255:1159–1178. https://

doi.org/10.1016/j.ccr.2010.12.031.

50. Sharma P, Teixeira de Mattos MJ, Hellingwerf KJ, Bekker M. 2012. On the

function of the various quinone species in Escherichia coli. FEBS J 279:

3364–3373. https://doi.org/10.1111/j.1742-4658.2012.08608.x.

51. Wilcoxen J, Zhang B, Hille R. 2011. Reaction of the molybdenum- and copper-containing carbon monoxide dehydrogenase from Oligotropha carboxydovorans with quinones. Biochemistry 50:1910–1916. https://doi

.org/10.1021/bi1017182.

52. Soboh B, Linder D, Hedderich R. 2002. Purification and catalytic properties of

a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. Eur J Biochem 269:5712–5721. https://doi.org/10.1046/j.1432

-1033.2002.03282.x.

53. Wiechmann A, Trifunovic D, Klein S, Müller V. 2020. Homologous production, one-step purification, and proof of Na1 transport by the Rnf complex from Acetobacterium woodii, a model for acetogenic conversion of

C1 substrates to biofuels. Biotechnol Biofuels 13:208. https://doi.org/10

.1186/s13068-020-01851-4.

54. Sánchez-Andrea I, Guedes IA, Hornung B, Boeren S, Lawson CE, Sousa DZ,

Bar-Even A, Claassens NJ, Stams AJM. 2020. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun 11:5090. https://doi.org/10.1038/s41467-020-18906-7.

55. Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference

for comparative genomics. Genome Biol 20:238. https://doi.org/10.1186/

s13059-019-1832-y.

56. Ghachi ME, Bouhss A, Blanot D, Mengin-Lecreulx D. 2004. The bacA gene of

Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279:30106–30113. https://doi.org/10.1074/jbc.M401701200.

57. Chiodini G, Caliro S, Caramanna G, Granieri D, Minopoli C, Moretti R, Perotta

L, Ventura G. 2006. Geochemistry of the submarine gaseous emissions of

Panarea (Aeolian islands, southern Italy): magmatic vs. hydrothermal origin

10.1128/aem.00185-23

13

Downloaded from https://journals.asm.org/journal/aem on 07 September 2023 by 54.66.17.246.

Isolation of Hydrogenogenic and Aerobic CO Oxidizer

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

and implications for volcanic surveillance. Pure Appl Geophys 163:759–780.

https://doi.org/10.1007/s00024-006-0037-y.

Schade GW, Crutzen PJ. 1999. CO emissions from degrading plant matter

(II). Tellus B Chem Phys Meteorol 51:909–918. https://doi.org/10.3402/

tellusb.v51i5.16503.

Conte L, Szopa S, Séférian R, Bopp L. 2019. The oceanic cycle of carbon

monoxide and its emissions to the atmosphere. Biogeosciences 16:

881–902. https://doi.org/10.5194/bg-16-881-2019.

Zuo Y, Jones RD. 1997. Photochemistry of natural dissolved organic matter in lake and wetland waters: production of carbon monoxide. Water

Res 31:850–858. https://doi.org/10.1016/S0043-1354(96)00316-8.

Montag D, Schink B. 2018. Formate and hydrogen as electron shuttles in

terminal fermentations in an oligotrophic freshwater lake sediment. Appl

Environ Microbiol 84:e01572-18. https://doi.org/10.1128/AEM.01572-18.

Cunliffe M. 2013. Physiological and metabolic effects of carbon monoxide oxidation in the model marine bacterioplankton Ruegeria pomeroyi DSS-3. Appl

Environ Microbiol 79:738–740. https://doi.org/10.1128/AEM.02466-12.

Schreier JE, Smith CB, Ioerger TR, Moran MA. 2023. A mutant fitness assay

identifies bacterial interactions in a model ocean hot spot. Proc Natl Acad

Sci U S A 120:e2217200120. https://doi.org/10.1073/pnas.2217200120.

Balk M, Heilig HGHJ, van Eekert MHA, Stams AJM, Rijpstra IC, SinningheDamsté JS, de Vos WM, Kengen SWM. 2009. Isolation and characterization

of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus

subsp. carboxydovorans, isolated from a geothermal spring in Turkey.

Extremophiles 13:885–894. https://doi.org/10.1007/s00792-009-0276-9.

Jain S, Katsyv A, Basen M, Müller V. 2021. The monofunctional CO dehydrogenase CooS is essential for growth of Thermoanaerobacter kivui on

carbon monoxide. Extremophiles 26:4. https://doi.org/10.1007/s00792

-021-01251-y.

Pfennig N. 1974. Rhodopseudomonas globiformis, sp. n., a new species

of the Rhodospirillaceae. Arch Microbiol 100:197–206. https://doi.org/

10.1007/BF00446317.

Wolin EA, Wolin MJ, Wolfe RS. 1963. Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886. https://doi.org/10.1016/

S0021-9258(18)67912-8.

Fukuyama Y, Tanimura A, Inoue M, Omae K, Yoshida T, Sako Y. 2019. Draft

genome sequences of two thermophilic Moorella sp. strains, isolated

from an acidic hot spring in Japan. Microbiol Resour Announc 8:e0066319. https://doi.org/10.1128/MRA.00663-19.

Watson ML. 1958. Staining of tissue sections for electron microscopy with

heavy metals. J Biophys Biochem Cytol 4:475–478. https://doi.org/10

.1083/jcb.4.4.475.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for

Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10

.1093/bioinformatics/btu170.

O’Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ.

2015. NxTrim: optimized trimming of Illumina mate pair reads. Bioinformatics 31:2035–2037. https://doi.org/10.1093/bioinformatics/btv057.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,

Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV,

Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J

Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. https://doi.org/10

.1093/bioinformatics/btp698.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,

Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup.

2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics

25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

Murphy RR, O’Connell J, Cox AJ, Schulz-Trieglaff O. 2015. NxRepair: error

correction in de novo sequence assembly using Nextera mate pairs. PeerJ

3:e996. https://doi.org/10.7717/peerj.996.

O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput

B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao

Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell

CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali

VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K,

Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS,

Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D,

June 2023 Volume 89 Issue 6

Applied and Environmental Microbiology

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

Wu W, Landrum MJ, Kimchi A, et al. 2016. Reference sequence (RefSeq)

database at NCBI: current status, taxonomic expansion, and functional

annotation. Nucleic Acids Res 44:D733–D745. https://doi.org/10.1093/

nar/gkv1189.

Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz

P. 2022. GTDB: an ongoing census of bacterial and archaeal diversity

through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 50:D785–D794. https://doi.org/

10.1093/nar/gkab776.

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://

doi.org/10.1093/bioinformatics/btt086.

Katoh K, Kuma K, Toh H, Miyata T. 2005. MAFFT version 5: improvement in

accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518.

https://doi.org/10.1093/nar/gki198.

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for

automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348.

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast

and effective stochastic algorithm for estimating maximum-likelihood

phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/

msu300.

Ivica L, Peer B. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and

new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10

.1093/nar/gkz239.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi

.org/10.1093/nar/gkh340.

Sudhir K, Glen S, Michael L, Christina K, Koichiro T. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol

Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096.

Hille R. 1996. The mononuclear molybdenum enzymes. Chem Rev 96:

2757–2816. https://doi.org/10.1021/cr950061t.

Meyer O, Schlegel HG. 1978. Reisolation of the carbon monoxide utilizing

hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov.

Arch Microbiol 118:35–43. https://doi.org/10.1007/BF00406071.

Park SW, Hwang EH, Park H, Kim JA, Heo J, Lee KH, Song T, Kim E, Ro YT,

Kim SW, Kim YM. 2003. Growth of Mycobacteria on carbon monoxide and

methanol. J Bacteriol 185:142–147. https://doi.org/10.1128/JB.185.1.142

-147.2003.

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment

using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth

.3176.

Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL.

1999. Alignment of whole genomes. Nucleic Acids Res 27:2369–2376.

https://doi.org/10.1093/nar/27.11.2369.

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K,

Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL,

Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD,

Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The

RAST Server: Rapid Annotations using Subsystems Technology. BMC

Genom 9:75. https://doi.org/10.1186/1471-2164-9-75.

Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. https://doi.org/10.1093/bioinformatics/

btr039.

Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz

P. 2007. CRISPR Recognition Tool (CRT): a tool for automatic detection of

clustered regularly interspaced palindromic repeats. BMC Bioinformatics

8:209. https://doi.org/10.1186/1471-2105-8-209.

Chan PP, Lin BY, Mak AJ, Lowe TM. 2021. tRNAscan-SE 2.0: improved

detection and functional classification of transfer RNA genes. Nucleic

Acids Res 49:9077–9096. https://doi.org/10.1093/nar/gkab688.

Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW. 2007.

RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic

Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160.

Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S,

Atkinson T. 2009. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408. https://doi

.org/10.1016/j.ymben.2009.08.005.

10.1128/aem.00185-23

14

Downloaded from https://journals.asm.org/journal/aem on 07 September 2023 by 54.66.17.246.

Isolation of Hydrogenogenic and Aerobic CO Oxidizer

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る