リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli

Takimoto, Ren Tatemichi, Yuki Aoki, Wataru Kosaka, Yuishin Minakuchi, Hiroyoshi Ueda, Mitsuyoshi Kuroda, Kouichi 京都大学 DOI:10.1038/s41598-022-08007-4

2022

概要

Since nitrogenase is irreversibly inactivated within a few minutes after exposure to oxygen, current studies on the heterologous expression of nitrogenase are limited to anaerobic conditions. This study comprehensively identified genes showing oxygen-concentration-dependent expression only under nitrogen-fixing conditions in Azotobacter vinelandii, an aerobic diazotroph. Among the identified genes, nafU, with an unknown function, was greatly upregulated under aerobic nitrogen-fixing conditions. Through replacement and overexpressing experiments, we suggested that nafU is involved in the maintenance of nitrogenase activity under aerobic nitrogenase activity. Furthermore, heterologous expression of nafU in nitrogenase-producing Escherichia coli increased nitrogenase activity under aerobic conditions by 9.7 times. Further analysis of NafU protein strongly suggested its localization in the inner membrane and raised the possibility that this protein may lower the oxygen concentration inside the cells. These findings provide new insights into the mechanisms for maintaining stable nitrogenase activity under aerobic conditions in A. vinelandii and provide a platform to advance the use of nitrogenase under aerobic conditions.

この論文で使われている画像

参考文献

1. Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems:

The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9, 105011 (2014).

2. Klerke, A., Christensen, C. H., Nørskov, J. K. & Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater.

Chem. 18, 2304–2310 (2008).

3. Wan, Z., Tao, Y., Shao, J., Zhang, Y. & You, H. Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells.

Energy Convers. Manag. 228, 113729 (2021).

4. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape.

Energy Environ. Sci. 13, 331–344 (2020).

5. Capdevila-Cortada, M. Electrifying the Haber-Bosch. Nat. Catal. 2, 1055 (2019).

6. Wang, Y. & Meyer, T. J. A route to renewable energy triggered by the Haber-Bosch process. Chemistry 5, 496–497 (2019).

7. Boerner, L. K. Industrial ammonia production emits more C

­ O2 than any other chemical-making reaction. Chemists want to change

that. Chem. Eng. News 97, 1–7 (2019).

8. Augustyn, A. Nitrogen-fixing bacteria. Encycl. Britannica 20, 1–2 (2020).

9. Gtari, M., Ghodhbane-Gtari, F., Nouioui, I., Beauchemin, N. & Tisa, L. S. Phylogenetic perspectives of nitrogen-fixing actinobacteria. Arch. Microbiol. 194, 3–11 (2012).

10. Batista, M. B. & Dixon, R. Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochem. Soc. Trans.

47, 603–614 (2019).

11. Barney, B. M., Eberhart, L. J., Ohlert, J. M., Knutson, C. M. & Plunkett, M. H. Gene deletions resulting in increased nitrogen release

by Azotobacter vinelandii: Application of a novel nitrogen biosensor. Appl. Environ. Microbiol. 81, 4316–4328 (2015).

12. Ryu, M. H. et al. Control of nitrogen fixation in bacteria that associate with cereals. Nat. Microbiol. 5, 314–330 (2020).

13. Aznar-Moreno, J. A., Jiang, X., Burén, S. & Rubio, L. M. Analysis of nitrogenase Fe protein activity in transplastomic tobacco.

Front. Agron. 3, 1–11 (2021).

14. Jiang, X. et al. Exploiting genetic diversity and gene synthesis to identify superior nitrogenase NifH protein variants to engineer

N2-fixation in plants. Commun. Biol. 4, 1–11 (2021).

15. Ivleva, N. B., Groat, J., Staub, J. M. & Stephens, M. Expression of active subunit of nitrogenase via integration into plant organelle

genome. PLoS ONE 11, 1–13 (2016).

16. Eseverri, Á. et al. Use of synthetic biology tools to optimize the production of active nitrogenase Fe protein in chloroplasts of

tobacco leaf cells. Plant Biotechnol. J. 18, 1882–1896 (2020).

17. Oldroyd, G. E. D. & Dixon, R. Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 26, 19–24 (2014).

18. Wang, L. et al. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in

Escherichia coli. PLOS Genet. 9, 1–11 (2013).

19. Temme, K., Zhao, D. & Voigt, C. A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc. Natl. Acad. Sci.

USA 109, 7085–7090 (2012).

20. Yang, J. et al. Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology. Proc. Natl.

Acad. Sci. USA 115, E8509–E8517 (2018).

21. Liu, X. et al. Combined assembly and targeted integration of multigene for nitrogenase biosynthetic pathway in Saccharomyces

cerevisiae. ACS Synth. Biol. 8, 1766–1775 (2019).

22. Eady, R. R., Smith, B. E., Cook, K. A. & Postgate, J. R. Nitrogenase of Klebsiella pneumoniae: Purification and properties of the

component proteins. Biochem. J. 128, 655–675 (1972).

23. Sabra, W., Zeng, A. P., Lunsdorf, H. & Deckwer, W. D. Effect of oxygen on formation and structure of Azotobacter vinelandii alginate

and its role in protecting nitrogenase. Appl. Environ. Microbiol. 66, 4037–4044 (2000).

24. Brian, A. C. & Jones, C. W. The respiratory system of Azotobacter vinelandii. Eur. J. Biochem. 20, 29–35 (1971).

25. Maier, R. J. & Moshiri, F. Role of the Azotobacter vinelandii nitrogenase-protective Shethna protein in preventing oxygen-mediated

cell death. J. Bacteriol. 182, 3854–3857 (2000).

26. Schlesier, J., Rohde, M., Gerhardt, S. & Einsle, O. A conformational switch triggers nitrogenase protection from oxygen damage

by Shethna protein II (FeSII). J. Am. Chem. Soc. 138, 239–247 (2016).

Scientific Reports |

Vol:.(1234567890)

(2022) 12:4182 |

https://doi.org/10.1038/s41598-022-08007-4

12

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

27. Horan, N. J., Jarman, T. R. & Dawes, E. A. Effects of carbon source and inorganic phosphate concentration on the production of

alginic acid by a mutant of Azotobacter vinelandii and on the enzymes involved in its biosynthesis. J. Gen. Microbiol. 127, 185–191

(1981).

28. Clementi, F., Fantozzi, P., Mancini, F. & Moresi, M. Optimal conditions for alginate production by Azotobacter vinelandii. Enzyme

Microb. Technol. 17, 983–988 (1995).

29. Moshiri, F., Kim, J. W., Fu, C. & Maier, R. J. The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation,

but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol. Microbiol. 14, 101–114

(1994).

30. Post, E., Kleiner, D. & Oelze, J. Whole cell respiration and nitrogenase activities in Azotobacter vinelandii growing in oxygen

controlled continuous culture. Arch. Microbiol. 134, 68–72 (1983).

31. Boiardi, J. L. Metabolic cost of nitrogen incoeporation by ­N2-fixing Azotobacter vinelandii is affected by the culture pH. Biotechnol.

Lett. 16, 1195–1198 (1994).

32. Li, X. X., Liu, Q., Liu, X. M., Shi, H. W. & Chen, S. F. Using synthetic biology to increase nitrogenase activity. Microb. Cell Fact. 15,

1–11 (2016).

33. Hamilton, T. L. et al. Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii. J. Bacteriol. 193, 4477–4486 (2011).

34. Barney, B. M. et al. Transcriptional analysis of an ammonium-excreting strain of Azotobacter vinelandii deregulated for nitrogen

fixation. Appl. Environ. Microbiol. 83, e01534–17 (2017).

35. Moshiri, F., Smith, E. G., Taormino, J. P. & Maier, R. J. Transcriptional regulation of cytochrome d in nitrogen-fixing Azotobacter

vinelandii. J. Biol. Chem. 266, 23169–23174 (1991).

36. Wu, G. et al. Regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii by CydR (Fnr). J. Biol. Chem.

275, 4679–4686 (2000).

37. Díaz-Barrera, A., Aguirre, A., Berrios, J. & Acevedo, F. Continuous cultures for alginate production by Azotobacter vinelandii

growing at different oxygen uptake rates. Process Biochem. 46, 1879–1883 (2011).

38. Burén, S., Jiménez-Vicente, E., Echavarri-Erasun, C. & Rubio, L. M. Biosynthesis of nitrogenase cofactors. Chem. Rev. 120, 4921–

4968 (2020).

39. Tatemichi, Y., Kawaguchi, T., Nakahara, T., Ueda, M. & Kuroda, K. Construction of recombinant Escherichia coli producing

nitrogenase-related proteins from Azotobacter vinelandii. Biosci. Biotechnol. Biochem. 85, 2209–2216 (2021).

40. Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 43,

W389–W394 (2015).

41. Plesa, M., Hernalsteens, J. P., Vandenbussche, G., Ruysschaert, J. M. & Cornelis, P. The SlyB outer membrane lipoprotein of Burkholderia multivorans contributes to membrane integrity. Res. Microbiol. 157, 582–592 (2006).

42. Welker, S. et al. Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Mol. Cell 39, 507–520 (2010).

43. Oppenheim, J., Fisher, R. J., Wilson, P. W. & Marcus, L. Properties of a soluble nitrogenase in Azotobacter. J. Bacteriol. 101, 292–296

(1970).

44. Kolonay, J. F., Moshiri, F., Gennis, R. B., Kaysser, T. M. & Maier, R. J. Purification and characterization of the cytochrome bd complex

from Azotobacter vinelandii: Comparison to the complex from Escherichia coli. J. Bacteriol. 176, 4177–4181 (1994).

45. Moreno, S. et al. Outer membrane protein i is associated with poly-β-hydroxybutyrate granules and is necessary for optimal polymer

accumulation in Azotobacter vinelandii on solid medium. Microbiology 165, 1107–1116 (2019).

46. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression

profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

47. Daly, M. J. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human

diabetes. Nat. Genet. 34, 267–273 (2003).

48. Subramanian, A., Kuehn, H., Gould, J., Tamayo, P. & Mesirov, J. P. GSEA-P: A desktop application for gene set enrichment analysis.

Bioinformatics 23, 3251–3253 (2007).

49. Yang, J., Xie, X., Yang, M., Dixon, R. & Wang, Y. P. Modular electron-transport chains from eukaryotic organelles function to

support nitrogenase activity. Proc. Natl. Acad. Sci. USA 114, E2460–E2465 (2017).

50. Yang, J., Xie, X., Wang, X., Dixon, R. & Wang, Y. P. Reconstruction and minimal gene requirements for the alternative iron-only

nitrogenase in Escherichia coli. Proc. Natl. Acad. Sci. USA 111, E3718–E3725 (2014).

51. García, A. et al. Metabolic flux analysis and the NAD(P)H/NAD(P)+ ratios in chemostat cultures of Azotobacter vinelandii. Microb.

Cell Fact. 17, 1–13 (2018).

52. Stephens, P. E., Darlison, M. G., Lewis, H. M. & Guest, J. R. The pyruvate dehydrogenase complex of Escherichia coli K12: nucleotide

sequence encoding the dihydrolipoamide acetyltransferase component. Eur. J. Biochem. 133, 481–489 (1983).

53. Castillo, T., Heinzle, E., Peifer, S., Schneider, K. & Peña, M. C. F. Oxygen supply strongly influences metabolic fluxes, the production

of poly(3-hydroxybutyrate) and alginate, and the degree of acetylation of alginate in Azotobacter vinelandii. Process. Biochem. 48,

995–1003 (2013).

54. Sickerman, N. S., Hu, Y. & Ribbe, M. W. Nitrogenase assembly: Strategies and procedures. Methods Enzymol. 595, 261–302 (2017).

55. Castillo, T., García, A., Padilla-Córdova, C., Díaz-Barrera, A. & Peña, C. Respiration in Azotobacter vinelandii and its relationship

with the synthesis of biopolymers. Electron. J. Biotechnol. 48, 36–45 (2020).

56. Galindo, E., Peña, C., Núñez, C., Segura, D. & Espín, G. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb. Cell Fact. 6, 1–16 (2007).

57. Knutson, C. M., Pieper, M. N. & Barney, B. M. Gene fitness of Azotobacter vinelandii under diazotrophic growth. J. Bacteriol.

203, e0040421 (2021).

58. Setubal, J. C. et al. Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J. Bacteriol. 191, 4534–4545 (2009).

59. Peña, C., Campos, N. & Galindo, E. Changes in alginate molecular mass distributions, broth viscosity and morphology of Azotobacter vinelandii cultured in shake flasks. Appl. Microbiol. Biotechnol. 48, 510–515 (1997).

60. Noguez, R. et al. Enzyme I­ Ntr, NPr and I­ IANtr are involved in regulation of the poly-β-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii. J. Mol. Microbiol. Biotechnol. 15, 244–254 (2008).

61. Magoc, T., Wood, D. & Salzberg, S. L. EDGE-pro: Estimated degree of gene expression in prokaryotic genomes. Evol. Bioinform.

2013, 127–136 (2013).

62. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene

expression data. Bioinformatics 26, 139–140 (2009).

63. Page, W. J. & Von Tigerstrom, M. Optimal conditions for transformation of Azotobacter vinelandii. J. Bacteriol. 139, 1058–1061

(1979).

64. Cahill, B. K., Seeley, K. W., Gutel, D. & Ellis, T. N. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles. Microbiol. Res. 180, 1–10 (2015).

65. Wessel, D. & Flügge, U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and

lipids. Anal. Biochem. 138, 141–143 (1984).

66. Aburaya, S., Aoki, W., Minakuchi, H. & Ueda, M. Definitive screening design enables optimization of LC-ESI-MS/MS parameters

in proteomics. Biosci. Biotechnol. Biochem. 81, 2237–2243 (2017).

Scientific Reports |

(2022) 12:4182 |

https://doi.org/10.1038/s41598-022-08007-4

13

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

67. Ohtani, Y. et al. Evaluation of meter-long monolithic columns for selected reaction monitoring mass spectrometry. J. Biosci. Bioeng.

128, 379–383 (2019).

68. Okuda, S. et al. JPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Res. 45, D1107–D1111 (2017).

69. Tsuji, T. et al. YAP1 mediates survival of ALK-rearranged lung cancer cells treated with alectinib via pro-apoptotic protein regulation. Nat. Commun. 11, 1–16 (2020).

Acknowledgements

This work was financially supported by Kikkoman Corporation and JST, COI-NEXT (grant number JPMJPF2008), Japan.

Author contributions

K.K. conceived the project, and R.T. and K.K. designed the experiments. Y.T. conducted the experiments using

nitrogenase-producing Escherichia coli. R.T. conducted all other experiments. W.A. supported the operation of

the LC–MS system and data acquisition. Y.K. provided instructions regarding the preparation of protein digests

and assisted with the related experiments. H.M. prepared the long monolithic column. R.T. and K.K. interpreted

the results. K.K. and M.U. supervised the project. R.T. and K.K. wrote the manuscript in consultation with M.U.

Competing interests Kyoto Monotech provided a monolithic column and supports H.M. in the form of salaries. R.T., Y. T., W. A., Y.

K., M. U., and K. K. all declare no conflict of interest.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​022-​08007-4.

Correspondence and requests for materials should be addressed to K.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

Scientific Reports |

Vol:.(1234567890)

(2022) 12:4182 |

https://doi.org/10.1038/s41598-022-08007-4

14

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る