リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Large‐scale investigation of zoonotic viruses in the era of high‐throughput sequencing」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Large‐scale investigation of zoonotic viruses in the era of high‐throughput sequencing

Kawasaki, Junna Tomonaga, Keizo Horie, Masayuki 京都大学 DOI:10.1111/1348-0421.13033

2023.01

概要

Zoonotic diseases considerably impact public health and socioeconomics. RNA viruses reportedly caused approximately 94% of zoonotic diseases documented from 1990 to 2010, emphasizing the importance of investigating RNA viruses in animals. Furthermore, it has been estimated that hundreds of thousands of animal viruses capable of infecting humans are yet to be discovered, warning against the inadequacy of our understanding of viral diversity. High-throughput sequencing (HTS) has enabled the identification of viral infections with relatively little bias. Viral searches using both symptomatic and asymptomatic animal samples by HTS have revealed hidden viral infections. This review introduces the history of viral searches using HTS, current analytical limitations, and future potentials. We primarily summarize recent research on large-scale investigations on viral infections reusing HTS data from public databases. Furthermore, considering the accumulation of uncultivated viruses, we discuss current studies and challenges for connecting viral sequences to their phenotypes using various approaches: performing data analysis, developing predictive modeling, or implementing high-throughput platforms of virological experiments. We believe that this article provides a future direction in large-scale investigations of potential zoonotic viruses using the HTS technology.

この論文で使われている画像

参考文献

1. Carroll D, Daszak P, Wolfe ND, et al. The Global Virome Project.

Science. 2018;359(6378):872–4.

2. Greninger AL. A decade of RNA virus metagenomics is (not)

enough. Virus Res. 2018;244:218–29.

3. Shi M, Lin X‐D, Tian J‐H, et al. Redefining the invertebrate RNA

virosphere. Nature. 2016;540(7634):539–43.

4. Shi M, Lin X‐D, Chen X, et al. The evolutionary history of vertebrate

RNA viruses. Nature. 2018;556(7700):197–202.

5. Geoghegan JL, Di Giallonardo F, Cousins K, Shi M, Williamson JE,

Holmes EC. Hidden diversity and evolution of viruses in market fish.

Virus Evol. 2018;4(2):vey031.

6. Edgar RC, Taylor J, Lin V, et al. Petabase‐scale sequence

alignment catalyses viral discovery. Nature. 2022;602(7895):

142–7.

7. Kawasaki J, Kojima S, Tomonaga K, Horie M, Moscona A. Hidden

viral sequences in public sequencing data and warning for future

emerging diseases. mBio. 2021;12(4):e01638–21.

8. Kumata R, Ito J, Takahashi K, Suzuki T, Sato K. A tissue level atlas of

the healthy human virome. BMC Biol. 2020;18(1):55.

9. Chang T, Hirai J, Hunt BPV, Suttle CA. Arthropods and the

evolution of RNA viruses. bioRxiv. 2021; https://doi.org/10.1101/

2021.05.30.446314

10. Wille M, Holmes EC. The ecology and evolution of influenza viruses.

Cold Spring Harbor Perspect Med. 2020;10(7):a038489.

11. Long JS, Mistry B, Haslam SM, Barclay WS. Host and viral

determinants of influenza A virus species specificity. Nat Rev

Microbiol. 2019;17(2):67–81.

12. Dawood FS, Iuliano AD, Reed C, et al. Estimated global mortality

associated with the first 12 months of 2009 pandemic influenza A

H1N1 virus circulation: a modelling study. Lancet Infect Dis.

2012;12(9):687–95.

13. Trifonov V, Khiabanian H, Rabadan R. Geographic dependence,

surveillance, and origins of the 2009 influenza A (H1N1) virus.

N Engl J Med. 2009;361(2):115–9.

14. Garten RJ, Davis CT, Russell CA, et al. Antigenic and genetic

characteristics of swine‐origin 2009 A(H1N1) influenza viruses

circulating in humans. Science. 2009;325(5937):197–201.

15. Smith GJ, Vijaykrishna D, Bahl J, et al. Origins and evolutionary

genomics of the 2009 swine‐origin H1N1 influenza A epidemic.

Nature. 2009;459(7250):1122–5.

16. Meekins DA, Gaudreault NN, Richt JA. Natural and experimental

SARS‐CoV‐2 infection in domestic and wild animals. Viruses.

2021;13(10):1993.

17. Sharun K, Dhama K, Pawde AM, et al. SARS‐CoV‐2 in animals:

potential for unknown reservoir hosts and public health implications. Vet Q. 2021;41(1):181–201.

18. Olival KJ, Hosseini PR, Zambrana‐Torrelio C, Ross N, Bogich TL,

Daszak P. Host and viral traits predict zoonotic spillover from

mammals. Nature. 2017;546(7660):646–50.

19. Grange ZL, Goldstein T, Johnson CK, et al. Ranking the risk of

animal‐to‐human spillover for newly discovered viruses. Proc Nat

Acad Sci. 2021;118(15):e2002324118.

11

20. Joly D, Johnson CK, Goldstein T, et al. The first phase of PREDICT:

surveillance for emerging infectious zoonotic diseases of wildlife

origin (2009‐2014). Int J Infect Dis. 2016;53:31–2.

21. Jonas O, Seifman R. Do we need a Global Virome Project? Lancet

Glob Health. 2019;7(10):e1314–e6.

22. Holmes EC, Rambaut A, Andersen KG. Pandemics: spend on

surveillance, not prediction. Nature. 2018;558(7709):180–2.

23. Carlson CJ, Farrell MJ, Grange Z, et al. The future of zoonotic risk

prediction. Philos Trans R Soc, B. 2021;376(1837):20200358.

24. Zhang Y‐Z, Chen Y‐M, Wang W, Qin X‐C, Holmes EC. Expanding

the RNA virosphere by unbiased metagenomics. Annu Rev Virol.

2019;6(1):119–39.

25. Abbas AA, Taylor LJ, Dothard MI, et al. Redondoviridae, a family of

small, circular DNA viruses of the human oro‐respiratory tract

associated with periodontitis and critical illness. Cell Host Microbe.

2019;25(5):719–29.

26. Chua KB, Bellini WJ, Rota PA, et al. nipah virus: a recently emergent

deadly paramyxovirus. Science. 2000;288(5470):1432–5.

27. Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet.

2019;20(6):341–55.

28. Chiu CY. Viral pathogen discovery. Curr Opin Microbiol.

2013;16(4):468–78.

29. Niller HH, Angstwurm K, Rubbenstroth D, et al. Zoonotic spillover

infections with Borna disease virus 1 leading to fatal human

encephalitis, 1999–2019: an epidemiological investigation. Lancet

Infect Dis. 2020;20(4):467–77.

30. Tappe D, Pörtner K, Frank C, et al. Investigation of fatal human

Borna disease virus 1 encephalitis outside the previously known area

for human cases, Brandenburg, Germany – a case report. BMC

Infect Dis. 2021;21(1):787.

31. Rubbenstroth D, Schlottau K, Schwemmle M, Rissland J, Beer M.

Human bornavirus research: back on track! PLoS Pathog.

2019;15(8):e1007873.

32. Korn K, Coras R, Bobinger T, et al. Fatal encephalitis associated with

borna disease virus 1. N Engl J Med. 2018;379(14):1375–7.

33. Schlottau K, Forth L, Angstwurm K, et al. Fatal encephalitic borna

disease virus 1 in solid‐organ transplant recipients. N Engl J Med.

2018;379(14):1377–9.

34. Grad YH, Lipsitch M. Epidemiologic data and pathogen genome

sequences: a powerful synergy for public health. Genome Biol.

2014;15(11):538.

35. Hill V, Ruis C, Bajaj S, Pybus OG, Kraemer MUG. Progress and

challenges in virus genomic epidemiology. Trends Parasitol.

2021;37(12):1038–49.

36. Singer JB, Thomson EC, McLauchlan J, Hughes J, Gifford RJ. GLUE:

a flexible software system for virus sequence data. BMC

Bioinformatics. 2018;19(1):532.

37. Campbell K, Gifford RJ, Singer J, et al. Making genomic surveillance

deliver: a lineage classification and nomenclature system to inform

rabies elimination. bioRxiv. 2021. https://doi.org/10.1101/2021.10.

13.464180

38. Katzourakis A, Gifford RJ. Endogenous viral elements in animal

genomes. PLoS Genet. 2010;6(11):e1001191.

39. Aiewsakun P, Katzourakis A. Endogenous viruses: connecting recent

and ancient viral evolution. Virology. 2015;479‐480:26–37.

40. Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices

for RNA‐seq data analysis. Genome Biol. 2016;17(1):181.

41. Lapidus AL, Korobeynikov AI. Metagenomic data assembly – the

way of decoding unknown microorganisms. Front Microbiol.

2021;12(653):613791.

42. Peri S, Roberts S, Kreko IR, et al. Read mapping and transcript

assembly: a scalable and high‐throughput workflow for the

processing and analysis of ribonucleic acid sequencing data. Front

Genet. 2020;10:1361.

43. Krishnamurthy SR, Wang D. Origins and challenges of viral dark

matter. Virus Res. 2017;239:136–42.

44. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment

using DIAMOND. Nature Methods. 2015;12(1):59–60.

13480421, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13033 by Cochrane Japan, Wiley Online Library on [14/07/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

LARGE‐SCALE INVESTIGATION OF ZOONOTIC VIRUSES

45. Chen J, Guo M, Wang X, Liu B. A comprehensive review and

comparison of different computational methods for protein remote

homology detection. Brief. Bioinform. 2016;19(2):231–44.

46. Illergård K, Ardell DH, Elofsson A. Structure is three to ten

times more conserved than sequence ‐ a study of structural

response in protein cores. Proteins: Struct, Funct, Bioinf.

2009;77(3):499–508.

47. Jurasz H, Pawłowski T, Perlejewski K. Contamination issue in viral

metagenomics: problems, solutions, and clinical perspectives. Front

Microbiol. 2021;12:745076.

48. Sutton TDS, Clooney AG, Ryan FJ, Ross RP, Hill C. Choice of

assembly software has a critical impact on virome characterisation.

Microbiome. 2019;7(1):12.

49. Martínez Martínez J, Martinez‐Hernandez F, Martinez‐Garcia M.

Single‐virus genomics and beyond. Nat Rev Microbiol. 2020;18(12):

705–16.

50. Bean AG, Baker ML, Stewart CR, et al. Studying immunity to

zoonotic diseases in the natural host – keeping it real. Nat Rev

Immunol. 2013;13(12):851–61.

51. Seal S, Dharmarajan G, Khan I. Evolution of pathogen tolerance and

emerging infections: a missing experimental paradigm. eLife.

2021;10:e68874.

52. Wang D. 5 challenges in understanding the role of the virome in

health and disease. PLoS Pathog. 2020;16(3):e1008318.

53. Pfaff F, Rubbenstroth D. Two novel bornaviruses

identified in colubrid and viperid snakes. Arch Virol. 2021;166(9):

2611–4.

54. Katz KS, Shutov O, Lapoint R, Kimelman M, Brister JR,

O'Sullivan C. STAT: a fast, scalable, MinHash‐based k‐mer tool to

assess Sequence Read Archive next‐generation sequence submissions. Genome Biol. 2021;22(1):270.

55. Cobbin JCA, Charon J, Harvey E, Holmes EC, Mahar JE. Current

challenges to virus discovery by meta‐transcriptomics. Curr Opin

Virol. 2021;51:48–55.

56. Altmäe S, Molina NM, Sola‐Leyva A. Omission of non‐poly(A) viral

transcripts from the tissue level atlas of the healthy human virome.

BMC Biol. 2020;18(1):179.

57. Deng Z, Delwart E. ContigExtender: a new approach to improving

de novo sequence assembly for viral metagenomics data. BMC

Bioinformatics. 2021;22(1):119.

58. Iwamoto M, Shibata Y, Kawasaki J, et al. Identification of novel

avian and mammalian deltaviruses provides new insights into

deltavirus evolution. Virus Evol. 2021;7(1):veab003.

59. Iyer MK, Niknafs YS, Malik R, et al. The landscape of long

noncoding RNAs in the human transcriptome. Nature Genet.

2015;47(3):199–208.

60. Boldogkői Z, Moldován N, Balázs Z, Snyder M, Tombácz D. Long‐

read sequencing – a powerful tool in viral transcriptome research.

Trends Microbiol. 2019;27(7):578–92.

61. Asplund M, Kjartansdóttir KR, Mollerup S, et al. Contaminating

viral sequences in high‐throughput sequencing viromics: a linkage

study of 700 sequencing libraries. Clin Microbiol Infect. 2019;25(10):

1277–85.

62. Lusk RW. Diverse and widespread contamination evident in the

unmapped depths of high throughput sequencing data. PLoS One.

2014;9(10):e110808.

63. Porter AF, Cobbin J, Li C‐X, Eden J‐S, Holmes EC. Metagenomic

identification of viral sequences in laboratory reagents. Viruses.

2021;13(11):2122.

64. Feehan BJ, Penin AA, Mukhin AN, et al. Novel mammalian

orthorubulavirus 5 discovered as accidental cell culture contaminant.

Viruses. 2019;11(9):777.

65. Ngoi CN, Siqueira J, Li L, et al. Corrigendum: the plasma virome

of febrile adult Kenyans shows frequent parvovirus B19 infections

and a novel arbovirus (Kadipiro virus). J Gen Virol. 2017;98(3):

517.

66. Ignacio‐Espinoza JC, Laperriere SM, Yeh Y‐C, et al. Ribosome‐

linked mRNA‐rRNA chimeras reveal active novel virus host

KAWASAKI

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

ET AL.

associations. bioRxiv. 2020. https://doi.org/10.1101/2020.10.30.

332502

Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR

guiding principles for scientific data management and stewardship.

Sci Data. 2016;3(1):160018.

Simmonds P, Adams MJ, Benkő M, et al. Virus taxonomy in the age

of metagenomics. Nat Rev Microbiol. 2017;15(3):161–8.

Roux S, Adriaenssens EM, Dutilh BE, et al. Minimum information

about an uncultivated virus genome (MIUViG). Nature Biotechnol.

2019;37(1):29–37.

Cross ST, Michalski D, Miller MR, Wilusz J. RNA regulatory

processes in RNA virus biology. Wiley Interdiscip Rev RNA.

2019;10(5):e1536.

Martin DP, Varsani A, Roumagnac P, et al. RDP5: a computer

program for analyzing recombination in, and removing signals of

recombination from, nucleotide sequence datasets. Virus Evol.

2020;7(1):veaa087.

Lam HM, Ratmann O, Boni MF. Improved algorithmic complexity

for the 3SEQ recombination detection algorithm. Mol Biol Evol.

2017;35(1):247–51.

Schäffer AA, Hatcher EL, Yankie L, et al. VADR: validation and

annotation of virus sequence submissions to GenBank. BMC

Bioinformatics. 2020;21(1):211.

Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Tatusova T. FLAN: a web

server for influenza virus genome annotation. Nucleic Acids Res.

2007;35(Web Server):W280–W4.

Wang S, Sundaram JP, Stockwell TB. VIGOR extended to annotate

genomes for additional 12 different viruses. Nucleic Acids Res.

2012;40(W1):W186–W92.

Shean RC, Makhsous N, Stoddard GD, Lin MJ, Greninger AL.

VAPiD: a lightweight cross‐platform viral annotation pipeline and

identification tool to facilitate virus genome submissions to NCBI

GenBank. BMC Bioinformatics. 2019;20(1):48.

Gorbalenya AE, Lauber C. Bioinformatics of virus taxonomy:

foundations and tools for developing sequence‐based hierarchical

classification. Curr Opin Virol. 2022;52:48–56.

Aiewsakun P, Simmonds P. The genomic underpinnings of

eukaryotic virus taxonomy: creating a sequence‐based framework

for family‐level virus classification. Microbiome. 2018;6(1):38.

Bao Y, Chetvernin V, Tatusova T. Improvements to pairwise

sequence comparison (PASC): a genome‐based web tool for virus

classification. Arch Virol. 2014;159(12):3293–304.

Babayan SA, Orton RJ, Streicker DG. Predicting reservoir hosts and

arthropod vectors from evolutionary signatures in RNA virus

genomes. Science. 2018;362(6414):577–80.

Mollentze N, Babayan SA, Streicker DG. Identifying and prioritizing

potential human‐infecting viruses from their genome sequences.

PLoS Biol. 2021;19(9):e3001390.

Young F, Rogers S, Robertson DL. Predicting host taxonomic

information from viral genomes: a comparison of feature representations. PLoS Comput Biol. 2020;16(5):e1007894.

Mollentze N, Streicker DG. Viral zoonotic risk is homogenous

among taxonomic orders of mammalian and avian reservoir hosts.

Proc Nat Acad Sci. 2020;117(17):9423–30.

Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd‐Smith JO.

Identifying genetic markers of adaptation for surveillance of viral

host jumps. Nat Rev Microbiol. 2010;8(11):802–13.

Albery GF, Becker DJ, Brierley L, et al. The science of the host–virus

network. Nat Microbiol. 2021;6(12):1483–92.

Wille M, Geoghegan JL, Holmes EC. How accurately can we assess

zoonotic risk. PLoS Biol. 2021;19(4):e3001135.

Krupovic M, Dolja VV, Koonin EV. Origin of viruses: primordial

replicators recruiting capsids from hosts. Nat Rev Microbiol.

2019;17(7):449–58.

Krupovic M, Dolja VV, Koonin EV. The LUCA and its complex

virome. Nat Rev Microbiol. 2020;18(11):661–70.

Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure

prediction with AlphaFold. Nature. 2021;596(7873):583–9.

13480421, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13033 by Cochrane Japan, Wiley Online Library on [14/07/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

12

90. Robertson AJ, Courtney JM, Shen Y, Ying J, Bax A. Concordance of

X‐ray and AlphaFold2 models of SARS‐CoV‐2 main protease with

residual dipolar couplings measured in solution. J Am Chem Soc.

2021;143(46):19306–10.

91. Jumper J, Tunyasuvunakool K, Kohli P, Hassabis D, Team tA.

Computational predictions of protein structures associated with

COVID‐19 Version 3. 2022. [cited 2020 Aug]. https://deepmind.

com/research/open-source/computational-predictions-of-proteinstructures-associated-with-COVID-19

92. Higgins MK. Can we alphafold our way out of the next pandemic?

J Mol Biol. 2021;433(20):167093.

93. Gouma S, Anderson EM, Hensley SE. Challenges of making effective

influenza vaccines. Annu Rev Virol. 2020;7(1):495–512.

94. Cai X, Li JJ, Liu T, Brian O, Li J. Infectious disease mRNA vaccines

and a review on epitope prediction for vaccine design. Briefings

Funct Genomics. 2021;20(5):289–303.

95. Hie B, Zhong ED, Berger B, Bryson B. Learning the language of viral

evolution and escape. Science. 2021;371(6526):284–8.

96. Gao A, Murphy RR, Chen W, et al. Progress in robotics for

combating infectious diseases. Sci Robot. 2021;6(52):eabf1462.

97. Ota S, Horisaki R, Kawamura Y, et al. Ghost cytometry. Science.

2018;360(6394):1246–51.

98. Ugawa M, Kawamura Y, Toda K, et al. In silico‐labeled ghost

cytometry. eLife. 2021;10:e67660.

99. Germond A, Ichimura T, Horinouchi T, Fujita H, Furusawa C,

Watanabe TM. Raman spectral signature reflects transcriptomic features

of antibiotic resistance in Escherichia coli. Commun Biol. 2018;1(1):85.

13

100. Ho C‐S, Jean N, Hogan CA, et al. Rapid identification of pathogenic

bacteria using Raman spectroscopy and deep learning. Nat

Commun. 2019;10(1):4927.

101. Kobayashi‐Kirschvink KJ, Nakaoka H, Oda A, et al. linear regression

links transcriptomic data and cellular Raman spectra. Cell Systems.

2018;7(1):104–17.

102. Kanno N, Kato S, Ohkuma M, Matsui M, Iwasaki W, Shigeto S.

Machine learning‐assisted single‐cell Raman fingerprinting for in

situ and nondestructive classification of prokaryotes. iScience.

2021;24(9):102975.

103. Yeh Y‐T, Gulino K, Zhang Y, et al. A rapid and label‐free platform

for virus capture and identification from clinical samples. Proc Nat

Acad Sci. 2020;117(2):895–901.

104. Xu GJ, Kula T, Xu Q, et al. Comprehensive serological profiling of

human populations using a synthetic human virome. Science.

2015;348(6239):aaa0698.

How to cite this article: Kawasaki J, Tomonaga K,

Horie M. Large‐scale investigation of zoonotic viruses

in the era of high‐throughput sequencing. Microbiol

Immunol. 2023;67:1–13.

https://doi.org/10.1111/1348-0421.13033

13480421, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13033 by Cochrane Japan, Wiley Online Library on [14/07/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

LARGE‐SCALE INVESTIGATION OF ZOONOTIC VIRUSES

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る