リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of diffractive dissociation on ultra-high energy cosmic rays and measurements of diffractive dissociation using ATLAS and LHCf detectors」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of diffractive dissociation on ultra-high energy cosmic rays and measurements of diffractive dissociation using ATLAS and LHCf detectors

大橋, 健 名古屋大学

2022.06.02

概要

超高エネルギー宇宙線は、50 年以上にわたり測定されているが、その起源は明らかではない。地球において観測される宇宙線のエネルギー頻度分布およびその原子核の組成 (質量組成) は、これらの起源を知るために重要な情報である。

超高エネルギー宇宙線の測定は、これらの粒子が大気中で引き起こす空気シャワーを通じて行われている。質量組成の推定は、空気シャワーの最大発達深さ𝑋𝑋𝒎𝒎𝒎𝒎𝒎𝒎などの測定値とそのシミュレーションによる予測を比較することにより行われている。Pierre Auger実験での測定では、𝑋𝑋𝒎𝒎𝒎𝒎𝒎𝒎の平均の系統誤差は、 −7.6+8.0 g/cm2である。一方、シミュレーション予測で用いられるハドロン相互作用モデル間の予測の違いは、±14 g/cm2である。

このようなハドロン相互作用に由来する不定性のために、質量組成の解釈は困難である。加えて、ハドロン相互作用モデル間の予測の違いは、ハドロン相互作用に由来する不定性を過小評価している。

回折衝突事象は、ハドロン相互作用における不定性の原因の一つである。回折衝突事象における不定性を減らすためには、加速器実験による測定が不可欠である。回折衝突事象には片側事象(SD)と両側事象(DD)などの複数の種類があり、回折質量で特徴付けられる。これらの SD と DD の反応断面積は、ALICE 実験や CMS 実験など、多数の実験で測定されている。これらの測定では、回折質量の比較的大きな場合について測定され、回折質量の非常に小さな場合をハドロン相互作用モデルを用いて外挿する事により反応断面積を求めている。そのため、これらの測定では非常に大きな系統誤差が報告されている。先行研究において、回折衝突事象の𝑋𝑋𝒎𝒎𝒎𝒎𝒎𝒎などへの影響は大きいことが指摘されている。SD と DD で生成された粒子は空気シャワー内で異なる振る舞いをするが、これらの研究ではその影響は明らかになっていない。また、加速器実験とこれらの先行研究では、回折衝突事象の定義が異なる。そのため、加速器実験の大きな系統誤差の影響は明らかでない。

本研究では、SD、DD、および回折質量の、質量組成に用いる測定量への影響を網羅的に調べた。その結果、回折衝突事象の非弾性散乱に対する割合のみが𝑋𝑋𝒎𝒎𝒎𝒎𝒎𝒎の平均値に大きく影響する一方、SD と DD の割合や回折質量の影響は小さいことが明らかになった。また、加速器実験の系統誤差の測定に由来する𝑋𝑋𝒎𝒎𝒎𝒎𝒎𝒎の平均値の不定性を求めた。ALICE 実験と CMS 実験の系統誤差に由来する不定性は、それぞれ−5.6+4.0 g/cm2および −1.2+1.7 g/cm2であった。ALICE 実験の系統誤差に由来する不定性は、Pierre Auger 実験での測定の主要な系統誤差と同程度である。回折衝突事象に由来する不定性の質量組成の推定への影響を避けるためには、不定性を±3.0 g/cm2より小さくする必要がある。

加速器実験の系統誤差が大きい理由は、回折質量の非常に小さい場合を測定できておらず、モデルを活用して外挿している事に由来する。特に、CMS 実験では、これらの場合をひとつのモデルを信頼して外挿している。回折質量の非常に小さい事象を直接測定し、これらのモデルを検証することが不可欠である。本研究では、LHCf 実験と ATLAS 実験の共同解析により、SD により生じる散乱角 0 度方向の光子のエネルギー頻度分布を求めた。この結果を用いて、CMS 実験において回折質量の非常に小さい事象の推定に用いられているモデルを検証した。検証の結果、CMS 実験では系統誤差を過小評価している可能性が示唆された。今後、LHCf 実験と ATLAS 実験の測定をより大きな統計量で行う事により、回折質量の非常に小さい事象の反応断面積における不定性を減らし、そして、質量組成推定の不定性を減らすことができる。

参考文献

[1] J. Linsley “Evidence for a Primary Cosmic-Ray Particle with Energy 1020 eV,” Phys. Rev. Lett., Vol. 10 (1963) 146–148, February, DOI: 10.1103/PhysRevLett.10.146.

[2] M. Nagano and A. A. Watson “Observations and implications of the ultrahigh- energy cosmic rays,” Rev. Mod. Phys., Vol. 72 (2000) 689–732, July, DOI: 10.1103/ RevModPhys.72.689.

[3] R. U. Abbasi, M. Abe, T. Abu-Zayyad et al. “The Cosmic Ray Energy Spectrum be- tween 2 PeV and 2 EeV Observed with the TALE Detector in Monocular Mode,” The Astrophysical Journal, Vol. 865 (2018) 74, September, DOI: 10.3847/1538-4357/ aada05.

[4] C. Jui “Summary of Results from the telescope Array Experiment,” in Proceedings of The 34th International Cosmic Ray Conference ̶PoS(ICRC2015) 035, Trieste, Italy: Sissa Medialab, August (2016) , DOI: 10.22323/1.236.0035.

[5] R. Abbasi, M. Abe, T. Abu-Zayyad et al. “The energy spectrum of cosmic rays above 1017.2 eV measured by the fluorescence detectors of the Telescope Array experiment in seven years,” Astroparticle Physics, Vol. 80 (2016) 131–140, July, DOI: 10.1016/ j.astropartphys.2016.04.002.

[6] F. Fenu “The cosmic ray energy spectrum measured using the Pierre Auger Ob- servatory,” in Proceedings of 35th International Cosmic Ray Conference ̶ PoS(ICRC2017) 486, Trieste, Italy: Sissa Medialab, August (2017) , DOI: 10.22323/ 1.301.0486.

[7] K. Greisen “END TO THE COSMIC-RAY SPECTRUM?” Phys. Rev. Lett., Vol. 16 (1966) 748–750.

[8] G. T. Zatsepin and V. A. Kuzmin “Upper Limit of the Spectrum of Cosmic Rays,” JETP Lett., Vol. 4 (1966) 78–.

[9] K.-H. Kampert and M. Unger “Measurements of the cosmic ray composition with air shower experiments,” Astroparticle Physics, Vol. 35 (2012) 660–678, DOI: 10.1016/ j.astropartphys.2012.02.004.

[10] D. Allard, E. Parizot, and A. Olinto “On the transition from galactic to extra- galactic cosmic-rays: Spectral and composition features from two opposite scenar- ios,” Astroparticle Physics, Vol. 27 (2007) 61-75, DOI: https://doi.org/10.1016/j. astropartphys.2006.09.006. 113

[11] D. Allard “Extragalactic propagation of ultrahigh energy cosmic-rays,” Astroparticle Physics, Vol. 39-40 (2012) 33-43, DOI: https://doi.org/10.1016/j.astropartphys.2011. 10.011, Cosmic Rays Topical Issue.

[12] E. G. Berezhko “Composition of cosmic rays accelerated in active galactic nuclei,” Astrophysical Journal, Vol. 698 (2009) 138–141, DOI: 10.1088/0004-637X/698/2/ L138.

[13] H. Tokuno, Y. Tameda, M. Takeda et al. “New air fluorescence detectors employed in the Telescope Array experiment,” Nuclear Instruments and Methods in Physics Re- search, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 676 (2012) 54–65, DOI: 10.1016/j.nima.2012.02.044.

[14] T. Abu-Zayyad, R. Aida, M. Allen et al. “The surface detector array of the Telescope Array experiment,” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 689 (2012) 87–97, DOI: 10.1016/j.nima.2012.05.079.

[15] A. Aab, P. Abreu, M. Aglietta et al. “The Pierre Auger Cosmic Ray Observatory,” Nu- clear Instruments and Methods in Physics Research, Section A: Accelerators, Spec- trometers, Detectors and Associated Equipment, Vol. 798 (2015a) 172–213, DOI: 10.1016/j.nima.2015.06.058.

[16] A. Yushkov “Mass Composition of Cosmic Rays with Energies above 1017.2 eV from the Hybrid Data of the Pierre Auger Observatory,” in Proceedings of 36th Interna- tional Cosmic Ray Conference ̶ PoS(ICRC2019) 482, Trieste, Italy: Sissa Medialab, August (2019) , DOI: 10.22323/1.358.0482.

[17] T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner “EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider,” Physical Review C - Nuclear Physics, Vol. 92 (2015) 1–15, DOI: 10.1103/PhysRevC. 92.034906.

[18] S. Ostapchenko “Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model,” Physical Review D - Particles, Fields, Gravita- tion and Cosmology, Vol. 83 (2011) 1–27, DOI: 10.1103/PhysRevD.83.014018.

[19] F. Riehn, H. Dembinski, R. Engel, A. Fedynitch, T. Gaisser, and T. Stanev “The hadronic interaction model Sibyll 2.3c and Feynman scaling,” in Proceedings of 35th International Cosmic Ray Conference ̶PoS(ICRC2017) 301, Trieste, Italy: Sissa Medialab, August (2017) , DOI: 10.22323/1.301.0301.

[20] A. Aab, P. Abreu, M. Aglietta et al. “Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1017.8 eV,” Phys. Rev. D, Vol. 90 (2014) 122005, December, DOI: 10.1103/PhysRevD.90.122005.

[21] S. Ostapchenko “QGSJET-II: towards reliable description of very high energy hadronic interactions,” Nuclear Physics B - Proceedings Supplements, Vol. 151 (2006) 143–146, January, DOI: 10.1016/j.nuclphysbps.2005.07.026.

[22] A. Aab, P. Abreu, M. Aglietta et al. “Muons in air showers at the Pierre Auger Ob- servatory: Mean number in highly inclined events,” Phys. Rev. D, Vol. 91 (2015b) 032003, February, DOI: 10.1103/PhysRevD.91.032003.

[23] L. Cazon et al. “Working Group Report on the Combined Analysis of Muon Density Measurements from Eight Air Shower Experiments,” in Proceedings of 36th Inter- national Cosmic Ray Conference ̶ PoS(ICRC2019): Sissa Medialab, August (2019) .

[24] K. Akiba, M. Akbiyik, M. Albrow et al. “LHC forward physics,” Journal of Physics G: Nuclear and Particle Physics, Vol. 43 (2016) 110201, November, DOI: 10.1088/ 0954-3899/43/11/110201.

[25] T. Pierog “Connecting accelerator experiments and cosmic ray showers,” EPJ Web of Conferences, Vol. 53 (2013) 01004, Jun, DOI: 10.1051/epjconf/20135301004.

[26] Tama´s Cso¨rgo˝, G. Antchev, P. Aspell et al. “Elastic Scattering and Total Cross-Section in p+p Reactions: As Measured by the LHC Experiment TOTEM at √ s = 7 TeV,” Progress of Theoretical Physics Supplement, Vol. 193 (2012) 180-183, 03, DOI: 10.1143/PTPS.193.180.

[27] K. Werner, F.-M. Liu, and T. Pierog “Parton ladder splitting and the rapidity depen- dence of transverse momentum spectra in deuteron-gold collisions at the BNL Rel- ativistic Heavy Ion Collider,” Physical Review C, Vol. 74 (2006) 044902, October, DOI: 10.1103/PhysRevC.74.044902.

[28] V. Khachatryan, A. M. Sirunyan, A. Tumasyan et al. “Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at √s = 7 TeV,” Phys. Rev. Lett., Vol. 105 (2010) 022002, July, DOI: 10.1103/PhysRevLett.105. 022002.

[29] V. Khachatryan, A. M. Sirunyan, A. Tumasyan et al. “Measurement of diffractive dissociation cross sections in pp collisions at √ s =7 TeV,” Physical Review D, Vol. 92 (2015) 012003, July, DOI: 10.1103/PhysRevD.92.012003.

[30] B. Abelev, J. Adam, D. Adamova´ et al. “Measurement of inelastic, single- and double- diffraction cross sections in proton ‒ proton collisions at the LHC with ALICE,” The European Physical Journal C, Vol. 73 (2013) 2456, Jun, DOI: 10.1140/epjc/ s10052-013-2456-0.

[31] F. V. Riehn “Hadronic multiparticle production with Sibyll,” Ph.D. dissertation, Karl- sruhe (2015) , DOI: 10.5445/IR/1000052699.

[32] N. Amos, C. Avila, W. Baker et al. “Diffraction dissociation in collisions at √ s=1.8 TeV,” Physics Letters B, Vol. 301 (1993) 313–316, March, DOI: 10.1016/ 0370-2693(93)90707-O.

[33] O. Adriani, E. Berti, L. Bonechi et al. “Measurement of energy flow, cross section and average inelasticity of forward neutrons produced in √s = 13 TeV proton-proton collisions with the LHCf Arm2 detector,” Journal of High Energy Physics, Vol. 2020 (2020) 16, July, DOI: 10.1007/JHEP07(2020)016.

[34] Y. Makino “Measurement of the very-forward photon production in 13 TeV proton- proton collisions at the LHC,” Ph.D. dissertation (2017) , URL: https://cds. cern.ch/record/2266968.

[35] O. Adriani, E. Berti, L. Bonechi et al. “LHCf plan for proton-oxygen colli- sions at LHC,” in Proceedings of 37th International Cosmic Ray Conference ̶ PoS(ICRC2021) 348, Trieste, Italy: Sissa Medialab, July (2021) , DOI: 10.22323/ 1.395.0348.

[36] S. Ostapchenko “LHC data on inelastic diffraction and uncertainties in the predic- tions for longitudinal extensive air shower development,” Physical Review D, Vol. 89 (2014) 074009, April, DOI: 10.1103/PhysRevD.89.074009.

[37] G. Aad, B. Abbott, J. Abdallah et al. “Rapidity gap cross sections measured with the ATLAS detector in pp collisions at √ s =7 TeV,” European Physical Journal C, Vol. 72 (2012) 1926, DOI: 10.1140/epjc/s10052-012-1926-0.

[38] G. Antchev, P. Aspell, I. Atanassov et al. “Measurement of proton-proton inelas- tic scattering cross-section at √s = 7 TeV ,” EPL (Europhysics Letters), Vol. 101 (2013a) 21003, January, DOI: 10.1209/0295-5075/101/21003.

[39] L. B. Arbeletche, V. P. Gonc¸alves, and M. A. Mu¨ller “Investigating the influ- ence of diffractive interactions on ultrahigh-energy extensive air showers,” Interna- tional Journal of Modern Physics A, Vol. 33 (2018) 1850153, September, DOI: 10.1142/S0217751X18501531.

[40] T. K. Gaisser, R. Engel, and E. Resconi Cosmic Rays and Particle Physics, Cam- bridge: Cambridge University Press (2016) , DOI: 10.1017/CBO9781139192194.

[41] R. Ulrich, R. Engel, and M. Unger “Hadronic multiparticle production at ultrahigh en- ergies and extensive air showers,” Physical Review D, Vol. 83 (2011) 054026, March, DOI: 10.1103/PhysRevD.83.054026.

[42] J. Matthews “A Heitler model of extensive air showers,” Astroparticle Physics, Vol. 22 (2005) 387–397, DOI: 10.1016/j.astropartphys.2004.09.003.

[43] J. R. FORSHAW and D. A. ROSS Quantum Chromodynamics and the Pomeron: Cambridge University Press (1997) .

[44] R. K. Ellis, W. J. Stirling, and B. R. Webber QCD and Collider Physics: Cambridge University Press (2003) .

[45] G. Antchev, P. Aspell, I. Atanassov et al. “Measurement of proton-proton elastic scat- tering and total cross-section at √s = 7 TeV ,” EPL (Europhysics Letters), Vol. 101 (2013b) 21002, January, DOI: 10.1209/0295-5075/101/21002.

[46] K. Goulianos “Diffractive interactions of hadrons at high energies,” Physics Reports, Vol. 101 (1983) 169–219, December, DOI: 10.1016/0370-1573(83)90010-8.

[47] A. V. Barnes, D. J. Mellema, A. V. Tollestrup, R. L. Walker, O. I. Dahl, R. A. Johnson, R. W. Kenney, and M. Pripstein “Pion Charge-Exchange Scattering at High Energies,” Physical Review Letters, Vol. 37 (1976) 76–79, July, DOI: 10.1103/PhysRevLett.37. 76.

[48] L. Jenkovszky, R. Schicker, and I. Szanyi “Elastic and diffractive scattering in the LHC era,” February, DOI: 10.1142/S0218301318300059.

[49] K. Ohashi, H. Menjo, Y. Itow, T. Sako, and K. Kasahara “Simulation study on the ef- fects of diffractive collisions on the prediction of the observables in ultra-high-energy cosmic-ray experiments,” Progress of Theoretical and Experimental Physics, Vol. 2021 (2021) 033F01, March, DOI: 10.1093/ptep/ptab013, Discussions related to the number of muons are shown in the version 1 in the preprint server only. You can find the version in the following page, https://arxiv.org/abs/2005.12594v1.

[50] T. Sjo¨strand, S. Ask, J. R. Christiansen et al. “An introduction to PYTHIA 8.2,” Com- puter Physics Communications, Vol. 191 (2015) 159–177, DOI: 10.1016/j.cpc.2015. 01.024.

[51] A. Donnachie and P. Landshoff “Elastic scattering and diffraction dissociation,” Nu- clear Physics B, Vol. 244 (1984) 322–336, October, DOI: 10.1016/0550-3213(84) 90315-8.

[52] R. CIESIELSKI “MBR Monte Carlo Simulation in PYTHIA8,” in Proceedings of 36th International Conference on High Energy Physics ̶PoS(ICHEP2012), Vol. 2012-July 301, Trieste, Italy: Sissa Medialab, August (2013) , DOI: 10.22323/1. 174.0301.

[53] K. Goulianos “Diffraction in QCD,” March, URL: http://arxiv.org/abs/ hep-ph/0203141.

[54] F. Riehn, R. Engel, A. Fedynitch, T. K. Gaisser, and T. Stanev “Hadronic interaction model sibyll 2.3d and extensive air showers,” Physical Review D, Vol. 102 (2020) 063002, September, DOI: 10.1103/PhysRevD.102.063002.

[55] M. L. Good and W. D. Walker “Diffraction Dissociation of Beam Particles,” Physical Review, Vol. 120 (1960) 1857–1860, December, DOI: 10.1103/PhysRev.120.1857.

[56] R. Ulrich, T. Pierog, and C. Baus “Cosmic Ray Monte Carlo Package, CRMC,” Zen- odo (2021) , https://doi.org/10.5281/zenodo.4558705.

[57] R. Covolan, J. Montanha, and K. Goulianos “A new determination of the soft pomeron intercept,” Physics Letters B, Vol. 389 (1996) 176-180, DOI: https://doi.org/10.1016/ S0370-2693(96)01362-7.

[58] G. Aad, B. Abbott, D. C. Abbott et al. “Measurement of differential cross sections for single diffractive dissociation in √ s = 8 TeV pp collisions using the ATLAS ALFA spectrometer,” Journal of High Energy Physics, Vol. 2020 (2020) 042, DOI: 10.1007/JHEP02(2020)042.

[59] G. Antchev, P. Aspell, I. Atanassov et al. “Luminosity-independent measurements of total, elastic and inelastic cross-sections at √s = 7 TeV,” EPL (Europhysics Letters), Vol. 101 (2013c) 21004, January, DOI: 10.1209/0295-5075/101/21004.

[60] G. Aad, B. Abbott, J. Abdallah et al. “Measurement of the total cross section from elastic scattering in pp collisions at √ s=7 TeV with the ATLAS detector,” Nuclear Physics B, Vol. 889 (2014) 486–548, DOI: 10.1016/j.nuclphysb.2014.10.019.

[61] A. M. Sirunyan, A. Tumasyan, W. Adam et al. “Measurement of the inelastic proton- proton cross section at √s = 13 TeV,” Journal of High Energy Physics, Vol. 2018 (2018) 161, July, DOI: 10.1007/JHEP07(2018)161.

[62] M. Aaboud, G. Aad, B. Abbott et al. “Measurement of the Inelastic Proton-Proton Cross Section at √ s=13 TeV with the ATLAS Detector at the LHC,” Physical Review Letters, Vol. 117 (2016a) 182002, DOI: 10.1103/PhysRevLett.117.182002.

[63] G. Aad, B. Abbott, J. Abdallah et al. “Measurement of the inelastic proton ‒ proton cross-section at √ s=7 TeV with the ATLAS detector,” Nature Communications, Vol. 2 (2011) 463, September, DOI: 10.1038/ncomms1472.

[64] G. Antchev, P. Aspell, I. Atanassov et al. “First measurement of elastic, inelastic and total cross-section at √s = 13 TeV by TOTEM and overview of cross-section data at LHC energies,” The European Physical Journal C, Vol. 79 (2019) 103, February, DOI: 10.1140/epjc/s10052-019-6567-0.

[65] M. Mallamaci et al. “Measurements of the depth of maximum muon production and of its fluctuations in extensive air showers above 1.5 1019 eV at the Pierre Auger Observatory,” August, DOI: 10.22323/1.301.0509.

[66] T. Bergmann, R. Engel, D. Heck, N. N. Kalmykov, S. Ostapchenko, T. Pierog, T. Thouw, and K. Werner “One-dimensional hybrid approach to extensive air shower simulation,” Astroparticle Physics, Vol. 26 (2007) 420–432, DOI: 10.1016/j. astropartphys.2006.08.005.

[67] S. A. Bass, M. Belkacem, M. Bleicher et al. “Microscopic Models for Ultrarelativistic Heavy Ion Collisions,” Progress in Particle and Nuclear Physics, Vol. 41 (1998) 255– 369, DOI: 10.1016/s0146-6410(98)00058-1.

[68] M. Bleicher, E. Zabrodin, C. Spieles et al. “Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model,” Journal of Physics G: Nuclear and Particle Physics, Vol. 25 (1999) 1859–1896, September, DOI: 10.1088/0954-3899/25/9/308.

[69] T. K. Gaisser and A. M. Hillas “Reliability of the Method of Constant Intensity Cuts for Reconstructing the Average Development of Vertical Showers,” in Proceedings of 15th International Cosmic Ray Conference (1977) .

[70] C. Meurer, J. Blu¨mer, R. Engel, A. Haungs, and M. Roth “Muon production in ex- tensive air showers and its relation to hadronic interactions,” Czechoslovak Journal of Physics, Vol. 56 (2006) A211–A219, September, DOI: 10.1007/s10582-006-0156-9.

[71] S. Ostapchenko and M. Bleicher “Constraining pion interactions at very high energies by cosmic ray data,” Physical Review D, Vol. 93 (2016) 051501, March, DOI: 10. 1103/PhysRevD.93.051501.

[72] “Measurement of contributions of diffractive processes to forward photon spectra in pp collisions at √ s = 13 TeV,”Technical report, CERN, Geneva (2017) , URL: https://cds.cern.ch/record/2291387.

[73] O. Adriani, E. Berti, L. Bonechi et al. “Measurement of forward photon production cross-section in proton ‒ proton collisions at √s = 13 TeV with the LHCf detector,” Physics Letters B, Vol. 780 (2018) 233–239, May, DOI: 10.1016/j.physletb.2017.12. 050.

[74] G. Aad, E. Abat, J. Abdallah et al. “The ATLAS Experiment at the CERN Large Hadron Collider,” Journal of Instrumentation, Vol. 3 (2008) S08003–S08003, August, DOI: 10.1088/1748-0221/3/08/S08003.

[75] O. Adriani, L. Bonechi, M. Bongi et al. “The lhcf detector at the cern large hadron collider,” Journal of Instrumentation, Vol. 3 (2008) , DOI: 10.1088/1748-0221/3/08/ S08006.

[76] A. Sidoti “Minimum bias trigger scintillators in ATLAS run II,” Journal of Instrumen- tation, Vol. 9 (2014) , DOI: 10.1088/1748-0221/9/10/C10020.

[77] Y. Makino, A. Tiberio, O. Adriani et al. “Performance study for the photon measure- ments of the upgraded LHCf calorimeters with Gd2SiO5 (GSO) scintillators,” Journal of Instrumentation, Vol. 12 (2017) , DOI: 10.1088/1748-0221/12/03/P03023.

[78] Q.-d. Zhou “Study of contributions of diffractive processes to forward neutral parti- cle production in p-p collisions at √s = 13 TeV with the ATLAS-LHCf detector.,” Ph.D. dissertation (2018) , URL: https://cds.cern.ch/record/2306650, Presented 22 Feb 2018.

[79] T. Sjo¨strand, L. Lo¨nnblad, S. Mrenna, and P. Skands “PYTHIA 6.3 Physics and Man- ual,” URL: http://arxiv.org/abs/hep-ph/0308153.

[80] K. Kasahara https://cosmos.n.kanagawa-u.ac.jp/EPICSHome/index.html (Accessed 20 Oct 2021) .

[81] J. Ranft “Dual parton model at cosmic ray energies,” Physical Review D, Vol. 51 (1995) 64–84, January, DOI: 10.1103/PhysRevD.51.64.

[82] S. Agostinelli, J. Allison, K. Amako et al. “Geant4̶a simulation toolkit,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrom- eters, Detectors and Associated Equipment, Vol. 506 (2003) 250–303, July, DOI: 10.1016/S0168-9002(03)01368-8.

[83] The ATLAS Collaboration, G. Aad, B. Abbott et al. The ATLAS Simulation Infras- tructure, Vol. 70 823–874 (2010) , DOI: 10.1140/epjc/s10052-010-1429-9.

[84] M. Aaboud, G. Aad, B. Abbott et al. “Charged-particle distributions at low transverse momentum in √ s=13 TeV pp interactions measured with the ATLAS detector at the LHC,” European Physical Journal C, Vol. 76 (2016b) 502, DOI: 10.1140/epjc/ s10052-016-4335-y.

[85] O. ADRIANI, L. BONECHI, M. BONGI et al. “LHCf DETECTOR PERFOR- MANCE DURING THE 2009 ‒ 2010 LHC RUN,” International Journal of Modern Physics A, Vol. 28 (2013) 1330036, DOI: 10.1142/S0217751X13300366.

[86] L. Tompkins “Performance of the ATLAS Minimum Bias Trigger in pp collisions at the LHC,”Technical report (2010) , URL: https://cds.cern.ch/record/ 1296152.

[87] B. Andersson, G. Gustafson, and T. Sjo¨strand “Baryon Production in Jet Fragmen- tation and γ-Decay,” Physica Scripta, Vol. 32 (1985) 574–580, December, DOI: 10.1088/0031-8949/32/6/003.

[88] C. Bierlich, A. Buckley, J. Butterworth et al. “Robust Independent Validation of Ex- periment and Theory: Rivet version 3,” SciPost Physics, Vol. 8 (2020) 026, February, DOI: 10.21468/SciPostPhys.8.2.026.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る