リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Search for the dimuon decay of the Higgs boson in 139 fb^-1 of pp collisions at √s=13 TeV with the ATLAS detector」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Search for the dimuon decay of the Higgs boson in 139 fb^-1 of pp collisions at √s=13 TeV with the ATLAS detector

川口, 智美 名古屋大学

2021.06.21

概要

素粒子標準模型は現在までの観測事実をよく記述しているが、実験的には未だ確認されていない現象がある。その中でも、2012年に発見されたヒッグス粒子の現象には未観測のものが多く残されている。その一つは、物質を構成する3世代のフェルミオンがヒッグス場との湯川相互作用を通して結合の強さに比例した質量を獲得することである。標準模型では不自然なことに、唯一のヒッグス粒子により、511keVの電子から172GeVのトップクォークまで6桁の質量の違いを説明し、世代を区別している。この不自然さを解明し、フェルミオンの質量起源と世代構造の謎に迫るために、全世代のフェルミオンとの湯川結合を測定することが非常に重要である。これまでに第3世代のフェルミオンとの湯川結合は観測されているが、第1世代と第2世代のフェルミオンとの湯川結合は観測されていない。

本論文では、ヒッグス粒子が2つの𝜇粒子に崩壊する𝐻→𝜇𝜇過程の探索について述べる。この崩壊は第2世代のフェルミオンである𝜇粒子との湯川結合を含む。また、μ粒子の再構成は実験的に容易であるため、第2世代のフェルミオンとの湯川結合探索における最重要ターゲットである。一方で、他の第2世代フェルミオン(𝑐,𝑠)に比べて崩壊率が0.02%と小さく、𝐻→𝜇𝜇過程をドレル・ヤン事象由来の膨大な背景事象の中から探索しなければならないことが探索を困難にしている。LHCで2015年から2016年に取得した重心系エネルギー13TeVのデータ36.1fb-1を用いた先行研究では、この過程の有意な観測に至っていない。

本研究では、LHCで2015年から2018年に取得した重心系エネルギー13TeVのデータ139fb-1を用いて𝐻→𝜇𝜇過程の探索を行った。この解析では、𝜇粒子対の不変質量を再構成し、膨大な背景事象の中からヒッグス粒子の質量125GeV付近のピークを探索する。よって、探索感度の向上のためには𝜇粒子対の不変質量分解能の向上と背景事象の削減が非常に重要である。不変質量分解能を向上させるために、私は𝜇粒子が光子を放射する事象に着目し、終状態放射由来と思われる光子を選別する手法を開発した。得られた光子を不変質量計算に加味することで、不変質量分解能が2.8%向上し、不変質量120GeVから130GeVの領域における信号事象の数が1.4%増加した。また、背景事象を削減するために、ヒッグス粒子生成時に付随するジェットやレプトンの数、運動学的情報を用いた機械学習を使用して、ヒッグス粒子生成事象を20個のカテゴリーに分類した。これによって、𝐻→𝜇𝜇過程の探索感度が約20%向上した。また、信号事象数を大きなバイアスなく抽出するために、ドレル・ヤン過程の解析的な分布を基礎とする関数を用いたフィットによって背景事象数を導出した。

本解析の結果、𝐻→𝜇𝜇崩壊の兆候を2σの統計的有意度で得た。また、標準模型で期待される信号数に対する信号数の測定値(結合強度)1.2±0.6を得た。この値は、標準模型と無矛盾であった。これらの結果は、LHCを使用した他の実験の一つであるCMS実験とも無矛盾であり、ヒッグス粒子と𝜇粒子の結合強度が第3世代フェルミオンの結合強度よりもはるかに小さいことを示唆している。さらに、第2世代フェルミオンの質量起源がヒッグス機構の不自然さから生じているようだということを初めて示す結果である。これは、フェルミオンの質量起源と世代構造の謎を解明する上で重要な要素を提供する。

現状、結合強度の測定は統計誤差が支配的である。今後計画されている高輝度LHC実験では、さらなるデータ取得によって、第2世代フェルミオンの湯川結合は5σを超える有意度で検証されることが期待される。だが、高輝度LHC実験は、より高いパイルアップ環境下で実験を行うため、データ取得や物理解析が困難になると予想される。そこで、高いパイルアップ環境下においても効率よく高横運動量のμ粒子を含む事象を瞬時に選別できるμ粒子飛跡トリガーアルゴリズムを開発した。さらに、この研究において確立した終状態光子の再構成手法は、より高いパイルアップ環境下での将来の実験に役立つと考えられる。

参考文献

[1] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29, arXiv:1207.7214 [hep-ex].

[2] CMS Collaboration, S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30–61, arXiv:1207.7235 [hep-ex].

[3] ATLAS Collaboration, G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.

[4] CMS Collaboration, S. Chatrchyan, G. Hmayakyan, and V. Khachatryan, The CMS experiment at the CERN LHC, Journal of Instrumentation 3 (2008) S08004–S08004, https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08004.

[5] T. Abe, R. Sato, and K. Yagyu, Muon specific two-Higgs-doublet model, JHEP 07 (2017) 012, arXiv:1705.01469 [hep-ph].

[6] G. Salam, Elements of QCD for hadron colliders, CERN Yellow Rep. School Proc. 5 (2020) 1–56.

[7] NNPDF Collaboration, R. D. U. Ball, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663, arXiv:1706.00428 [hep-ph].

[8] B. Andersson, G. Gustafson, G. Ingelman, and T. Sj¨ostrand, Parton fragmentation and string dynamics, Physics Reports 97 (1983) 31 – 145, http://www.sciencedirect.com/science/article/pii/0370157383900807.

[9] T. Gleisberg, S. H¨oche, F. Krauss, M. Sch¨onherr, S. Schumann, F. Siegert, and J. Winter, Event generation with SHERPA 1.1, Journal of High Energy Physics 2009 (2009) 007–007, https://doi.org/10.1088%2F1126-6708%2F2009%2F02%2F007.

[10] LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [hep-ph].

[11] ATLAS Collaboration, M. Aaboud et al., Search for the dimuon decay of the Higgs boson in pp collisions at √ s = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 119 (2017) 051802, arXiv:1705.04582 [hep-ex].

[12] ATLAS Collaboration, G. Aad et al., Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at √ s = 13 TeV collected with the ATLAS experiment, Phys. Rev. D 101 (2020) 012002, arXiv:1909.02845 [hep-ex].

[13] ATLAS Collaboration, A search for the rare decay of the Standard Model Higgs boson to dimuons in pp collisions at √ s = 13 TeV with the ATLAS Detector, ATLAS-CONF-2018-026, 2018, https://cds.cern.ch/record/2628763.

[14] L. Evans and P. Bryant, LHC Machine, Journal of Instrumentation 3 (2008) S08001–S08001, https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08001.

[15] C. De Melis, The CERN accelerator complex. Complexe des acc´el´erateurs du CERN, http://cds.cern.ch/record/2119882, General Photo.

[16] J. Wenninger, LHC status and performance, PoS CHARGED2018 (2019) 001.

[17] K. Potamianos, The upgraded Pixel detector and the commissioning of the Inner Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider, PoS EPS-HEP2015 (2015) 261, arXiv:1608.07850 [physics.ins-det].

[18] ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report, cern-lhcc-2010-013; atlas-tdr-19, 2010. https://cds.cern.ch/record/1291633.

[19] ATLAS Collaboration, ATLAS muon spectrometer: Technical Design Report, cern-lhcc-97-022; atlas-tdr-10, 1997. https://cds.cern.ch/record/331068.

[20] ATLAS Collaboration, M. Aaboud et al., Performance of the ATLAS Trigger System in 2015, Eur. Phys. J. C 77 (2017) 317, arXiv:1611.09661 [hep-ex].

[21] CMS Collaboration, Measurement of the differential Drell-Yan cross section in proton-proton collisions at 13 TeV, CMS-PAS-SMP-16-009, 2016, https://cds.cern.ch/record/2205152.

[22] ATLAS Collaboration, Luminosity Public Results Run2, https: //twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2.

[23] ATLAS Collaboration, G. Aad et al., Performance of the ATLAS muon triggers in Run 2, JINST 15 (2020) P09015, arXiv:2004.13447 [hep-ex].

[24] ATLAS Collaboration, ATLAS computing: Technical design report, cern-lhcc-2005-022; atlas-tdr-017, 2005. https://cds.cern.ch/record/837738.

[25] P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040, arXiv:hep-ph/0409146.

[26] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070, arXiv:0709.2092 [hep-ph].

[27] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001, arXiv:1510.03865 [hep-ph].

[28] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002, arXiv:hep-ph/0703012.

[29] ATLAS Collaboration, G. Aad et al., Measurement of the Z/γ∗ boson transverse momentum distribution in pp collisions at √ s = 7 TeV with the ATLAS detector, JHEP 09 (2014) 145, arXiv:1406.3660 [hep-ex].

[30] P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037, arXiv:0911.5299 [hep-ph].

[31] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola, T. Reiter, and F. Tramontano, Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889, arXiv:1111.2034 [hep-ph].

[32] G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, HW±/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, JHEP 10 (2013) 083, arXiv:1306.2542 [hep-ph].

[33] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, arXiv:1405.0301 [hep-ph].

[34] NNPDF Collaboration, R. D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040, arXiv:1410.8849 [hep-ph].

[35] ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data, ATL-PHYS-PUB-2014-021, 2014, https://cds.cern.ch/record/1966419.

[36] Sherpa Collaboration, E. Bothmann et al., Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034, arXiv:1905.09127 [hep-ph].

[37] S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038, arXiv:0709.1027 [hep-ph].

[38] S. Hoeche, F. Krauss, M. Schonherr, and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049, arXiv:1111.1220 [hep-ph].

[39] S. Hoeche, F. Krauss, M. Schonherr, and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027, arXiv:1207.5030 [hep-ph].

[40] T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039, arXiv:0808.3674 [hep-ph].

[41] F. Cascioli, P. Maierhofer, and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601, arXiv:1111.5206 [hep-ph].

[42] A. Denner, S. Dittmaier, and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220–238, arXiv:1604.06792 [hep-ph].

[43] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244–289, arXiv:1207.1303 [hep-ph].

[44] ATLAS Collaboration, The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie-Landshoff diffractive model, ATL-PHYS-PUB-2016-017, 2016, https://cds.cern.ch/record/2206965.

[45] ATLAS Collaboration, G. Aad et al., The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823–874, arXiv:1005.4568 [physics.ins-det].

[46] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, and S. Banerjee, Geant4―a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 (2003) 250 – 303, http://www.sciencedirect.com/science/article/pii/S0168900203013688.

[47] S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, and C. Yuan, New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006, arXiv:1506.07443 [hep-ph].

[48] L. Lonnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046, arXiv:hep-ph/0112284.

[49] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan, New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024, arXiv:1007.2241 [hep-ph].

[50] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001, arXiv:hep-ph/0206293.

[51] J. Pumplin, D. Stump, J. Huston, H. Lai, P. M. Nadolsky, and W. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012, arXiv:hep-ph/0201195.

[52] P. Golonka and Z. Was, Next to Leading Logarithms and the PHOTOS Monte Carlo, Eur. Phys. J. C 50 (2007) 53–62, arXiv:hep-ph/0604232.

[53] ATLAS Collaboration, M. Aaboud et al., Performance of the ATLAS Track Reconstruction Algorithms in Dense Environments in LHC Run 2, Eur. Phys. J. C 77 (2017) 673, arXiv:1704.07983 [hep-ex].

[54] A. Rosenfeld and J. L. Pfaltz, Sequential Operations in Digital Picture Processing, J. ACM 13 (1966) 471, https://doi.org/10.1145/321356.321357.

[55] R. Fr¨uhwirth, Application of Kalman filtering to track and vertex fitting, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 262 (1987) 444–450, http://www.sciencedirect.com/science/article/pii/0168900287908874.

[56] ATLAS Collaboration, A neural network clustering algorithm for the ATLAS silicon pixel detector, Journal of Instrumentation 9 (2014) P09009–P09009, http://dx.doi.org/10.1088/1748-0221/9/09/P09009.

[57] F. Meloni, Primary vertex reconstruction with the ATLAS detector, Journal of Instrumentation 11 (2016) C12060–C12060, https://doi.org/10.1088%2F1748-0221%2F11%2F12%2Fc12060.

[58] W. Waltenberger, R. Fr¨uhwirth, and P. Vanlaer, Adaptive vertex fitting, Journal of Physics G: Nuclear and Particle Physics 34 (2007) N343–N356, https://doi.org/10.1088%2F0954-3899%2F34%2F12%2Fn01.

[59] ATLAS Collaboration, G. Aad et al., Muon reconstruction performance of the ATLAS detector in proton–proton collision data at √ s =13 TeV, Eur. Phys. J. C 76 (2016) 292, arXiv:1603.05598 [hep-ex].

[60] ATLAS Collaboration, Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at √ s = 13 TeV, ATLAS-CONF-2020-030, 2020, http://cds.cern.ch/record/2725736.

[61] J. Illingworth and J. Kittler, A survey of the hough transform, Computer Vision, Graphics, and Image Processing 44 (1988) 87 – 116, http://www.sciencedirect.com/science/article/pii/S0734189X88800331.

[62] ATLAS Collaboration, G. Aad et al., Studies of the performance of the ATLAS detector using cosmic-ray muons, Eur. Phys. J. C 71 (2011) 1593, arXiv:1011.6665 [physics.ins-det].

[63] M. Aaboud, G. Aad, B. Abbott, J. Abdallah, O. Abdinov, B. Abeloos, S. H. Abidi, O. S. AbouZeid, N. L. Abraham, and et al., Jet reconstruction and performance using particle flow with the ATLAS Detector, The European Physical Journal C 77 (2017), http://dx.doi.org/10.1140/epjc/s10052-017-5031-2.

[64] ATLAS Collaboration, G. Aad et al., Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J. C 77 (2017) 490, arXiv:1603.02934 [hep-ex].

[65] ATLAS Collaboration, G. Aad et al., Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton-proton collision data, JINST 14 (2019) P12006, arXiv:1908.00005 [hep-ex].

[66] T. Cornelissen, M. Elsing, I. Gavrilenko, W. Liebig, E. Moyse, and A. Salzburger, The new ATLAS track reconstruction (NEWT), Journal of Physics: Conference Series 119 (2008) 032014, https://doi.org/10.1088%2F1742-6596%2F119%2F3%2F032014.

[67] ATLAS Collaboration, Improved electron reconstruction in ATLAS using the Gaussian Sum Filter-based model for bremsstrahlung, ATLAS-CONF-2012-047, 2012, https://cds.cern.ch/record/1449796.

[68] ATLAS Collaboration, Tagging and suppression of pileup jets with the ATLAS detector, ATLAS-CONF-2014-018, 2014, https://cds.cern.ch/record/1700870.

[69] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063, arXiv:0802.1189 [hep-ph].

[70] ATLAS Collaboration, G. Aad et al., Jet energy scale and resolution measured in proton-proton collisions at √ s = 13 TeV with the ATLAS detector, arXiv:2007.02645 [hep-ex].

[71] M. Cacciari and G. P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119–126, arXiv:0707.1378 [hep-ph].

[72] ATLAS Collaboration, Monte Carlo Calibration and Combination of In-situ Measurements of Jet Energy Scale, Jet Energy Resolution and Jet Mass in ATLAS, ATLAS-CONF-2015-037, 2015, https://cds.cern.ch/record/2044941.

[73] ATLAS Collaboration, Jet global sequential corrections with the ATLAS detector in proton-proton collisions at sqrt(s) = 8 TeV, ATLAS-CONF-2015-002, 2015, https://cds.cern.ch/record/2001682.

[74] ATLAS Collaboration, G. Aad et al., ATLAS b-jet identification performance and efficiency measurement with tt¯ events in pp collisions at √ s = 13 TeV, Eur. Phys. J. C 79 (2019) 970, arXiv:1907.05120 [hep-ex].

[75] ATLAS Collaboration, Optimisation and performance studies of the ATLAS b-tagging algorithms for the 2017-18 LHC run, ATL-PHYS-PUB-2017-013, 2017, https://cds.cern.ch/record/2273281.

[76] ATLAS Collaboration, Secondary vertex finding for jet flavour identification with the ATLAS detector, ATL-PHYS-PUB-2017-011, 2017, https://cds.cern.ch/record/2270366.

[77] ATLAS Collaboration, Topological b-hadron decay reconstruction and identification of b-jets with the JetFitter package in the ATLAS experiment at the LHC, ATL-PHYS-PUB-2018-025, 2018, https://cds.cern.ch/record/2645405.

[78] ATLAS Collaboration, M. Aaboud et al., Measurements of b-jet tagging efficiency with the ATLAS detector using tt events at √ s = 13 TeV, JHEP 08 (2018) 089, arXiv:1805.01845 [hep-ex].

[79] ATLAS Collaboration, M. Aaboud et al., Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at √ s = 13 TeV, Eur. Phys. J. C 78 (2018) 903, arXiv:1802.08168 [hep-ex].

[80] ATLAS Collaboration, G. Aad et al., Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012006, arXiv:1408.5191 [hep-ex].

[81] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees. Wadsworth and Brooks, 1984.

[82] B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, Boosted decision trees, an alternative to artificial neural networks, Nucl. Instrum. Meth. A 543 (2005) 577–584, arXiv:physics/0408124.

[83] T. Chen and C. Guestrin, XGBoost, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), http://dx.doi.org/10.1145/2939672.2939785.

[84] ATLAS Collaboration, M. Aaboud et al., Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173–191, arXiv:1806.00425 [hep-ex].

[85] J. C. Collins and D. E. Soper, Angular distribution of dileptons in high-energy hadron collisions, Phys. Rev. D 16 (1977) 2219–2225, https://link.aps.org/doi/10.1103/PhysRevD.16.2219.

[86] ATLAS Collaboration, G. Aad et al., A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector, Phys. Lett. B 812 (2021) 135980, arXiv:2007.07830 [hep-ex].

[87] ATLAS Collaboration, M. Aaboud et al., Measurement of the Drell-Yan triple-differential cross section in pp collisions at √ s = 8 TeV, JHEP 12 (2017) 059, arXiv:1710.05167 [hep-ex].

[88] ATLAS Collaboration, Luminosity determination in pp collisions at √ s = 13 TeV using the ATLAS detector at the LHC, ATLAS-CONF-2019-021, 2019, https://cds.cern.ch/record/2677054.

[89] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554, arXiv:1007.1727 [physics.data-an], [Erratum: Eur.Phys.J.C 73, 2501 (2013)].

[90] CMS Collaboration, Measurement of Higgs boson decay to a pair of muons in proton-proton collisions at √ s = 13 TeV, CMS-PAS-HIG-19-006, 2020, https://cds.cern.ch/record/2725423.

[91] CERN, HL-LHC Project schedule, https://project-hl-lhc-industry.web.cern.ch/content/project-schedule.

[92] ATLAS Collaboration, Technical Design Report for the ATLAS Inner Tracker Strip Detector, cern-lhcc-2017-005; atlas-tdr-025, 2017. https://cds.cern.ch/record/2257755.

[93] ATLAS Collaboration, Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System, cern-lhcc-2017-020; atlas-tdr-029, 2017. https://cds.cern.ch/record/2285584.

[94] ATLAS Collaboration, New Small Wheel Technical Design Report, cern-lhcc-2013-006; atlas-tdr-020, 2013. https://cds.cern.ch/record/1552862.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る