リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quantitative Analysis of Hydrogen in High-Hydrogen-Content Material of Magnesium Hydride via Laser-Induced Breakdown Spectroscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quantitative Analysis of Hydrogen in High-Hydrogen-Content Material of Magnesium Hydride via Laser-Induced Breakdown Spectroscopy

Susumu Imashuku Takumi Kamimura Shunsuke Kashiwakura Kazuaki Wagatsuma 東北大学 DOI:10.1021/acs.analchem.0c01479

2020.07.29

概要

An analytical approach that can rapidly determine a wide range of hydrogen concentration in solid-state materials has been recently demanded to contribute to hydrogen economy. This study presents a method for estimating hydrogen concentrations ranging from 0.2 to 7.6 mass% via laser-induced breakdown spectroscopy (LIBS) in a few seconds, with an improvement in the upper limit of determination (7.6 mass%) by approximately 1.3 times compared with a previous work (5.7 mass%). This extension of the determinable concentration range was achieved by measuring the emission intensity at 656.28 nm from the sample in a helium atmosphere at 3000 Pa under focused laser irradiation and by reducing the water residues in both the sample and gas line of LIBS system. The as-determined hydrogen concentrations in magnesium hydride (MgH2) samples agreed well with those estimated through inert gas fusion/gas chromatography. The calibration curve for LIBS analysis was acquired by measuring the emission intensity at 656.28 nm of standard Mg/MgH2 mixtures containing various hydrogen concentrations (0, 0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 7.6 mass%). Results indicated that the proposed LIBS-based method is applicable to the rapid quantitative analysis of hydrogen in hydrogen-containing material of MgH2.

この論文で使われている画像

参考文献

(1) Stephan, J. J.; Ponec, V.; Sachtler, W. M. H. Thermal Desorption of Hydrogen from Platinum Films. J. Catal. 1975, 37, 81-90.

(2) Holm, V. C. F.; Thompson, J. G. Determinations of Hydrogen in Ferrous Materials by Vacuum Extraction at 800 Degrees C and by Vacuum Fusion. J. Res. Natl. Bur. Stand. 1941, 26, 245-259.

(3) Holt, B. D.; Goodspeed, H. T. Determination of Nitrogen, Oxygen, and Hydrogen in Metals by Inert Gas Fusion - a Manometric Method. Anal. Chem. 1963, 35, 1510-1513.

(4) Magee, C. W.; Harrington, W. L.; Honig, R. E. Secondary Ion Quadrupole Mass-Spectrometer for Depth Profiling-Design and Performance Evaluation. Rev. Sci. Instrum. 1978, 49, 477-485.

(5) Magee, C. W.; Wu, C. P. Hydrogen-Ion Implantation Profiles as Determined by Sims. Nucl. Instrum. Methods 1978, 149, 529-533.

(6) Payling, R.; Michler, J.; Aeberhard, M. Quantitative Analysis of Conductive Coatings by Radiofrequency-Powered Glow Discharge Optical Emission Spectrometry: Hydrogen, D.C. Bias Voltage and Density Corrections. Surf. Interface Anal. 2002, 33, 472-477.

(7) Colonna, G.; Pietanza, L. D.; Capitelli, M. Coupled Solution of a Time-Dependent Collisional-Radiative Model and Boltzmann Equation for Atomic Hydrogen Plasmas: Possible Implications with Libs Plasmas. Spectrochim. Acta, Part B 2001, 56, 587-598.

(8) Idris, N.; Kurniawan, H.; Lie, T. J.; Pardede, M.; Suyanto, H.; Hedwig, R.; Kobayashi, T.; Kagawa, K.; Maruyama, T. Characteristics of Hydrogen Emission in Laser Plasma Induced by Focusing Fundamental Q-Sw Yag Laser on Solid Samples. Jpn. J. Appl. Phys. 2004, 43, 4221-4228.

(9) Kurniawan, K. H.; Lie, T. J.; Idris, N.; Kobayashi, T.; Maruyama, T.; Kagawa, K.; Tjia, M. O.; Chumakov, A. N. Hydrogen Analysis of Zircaloy Tube Used in Nuclear Power Station Using Laser Plasma Technique. J. Appl. Phys. 2004, 96, 6859-6862.

(10) Kurniawan, K. H.; Pardede, M.; Hedwig, R.; Lie, Z. S.; Lie, T. J.; Kurniawan, D. P.; Ramli, M.; Fukumoto, K.; Niki, H.; Abdulmadjid, S. N.; Idris, N.; Maruyama, T.; Kagawa, K.; Tjia, M. O. Quantitative Hydrogen Analysis of Zircaloy-4 Using Low- Pressure Laser Plasma Technique. Anal. Chem. 2007, 79, 2703-2707.

(11) Henry, C. A.; Diwakar, P. K.; Hahn, D. W. Investigation of Helium Addition for Laser-Induced Plasma Spectroscopy of Pure Gas Phase Systems: Analyte Interactions and Signal Enhancement. Spectrochim. Acta, Part B 2007, 62, 1390-1398.

(12) Ramli, M.; Fukumoto, K.; Niki, H.; Abdulmadjid, S. N.; Idris, N.; Maruyama, T.; Kagawa, K.; Tjia, M. O.; Pardede, M.; Kurniawan, K. H.; Hedwig, R.; Lie, Z. S.; Lie, T. J.; Kurniawan, D. P. Quantitative Hydrogen Analysis of Zircaloy-4 in Laser-Induced Breakdown Spectroscopy with Ambient Helium Gas. Appl Opt 2007, 46, 8298-8304.

(13) Munadi; Pardede, M.; Hedwig, R.; Suliyanti, M. M.; Lie, T. J.; Lie, Z. S.; Kurniawan, K. H.; Kagawa, K.; Ramli, M.; Fukumoto, K.; Maruyama, T.; Tjia, M. O. Study of Hydrogen and Deuterium Emission Characteristics in Laser-Induced Low-Pressure Helium Plasma for the Suppression of Surface Water Contamination. Anal. Chem. 2008, 80, 1240-1246.

(14) Hedwig, R.; Lie, Z. S.; Kurniawan, K. H.; Chumakov, A. N.; Kagawa, K.; Tjia, M. O. Toward Quantitative Deuterium Analysis with Laser-Induced Breakdown Spectroscopy Using Atmospheric-Pressure Helium Gas. J. Appl. Phys. 2010, 107, 023301.

(15) Lie, Z. S.; Khumaeni, A.; Maruyama, T.; Fukumoto, K.-i.; Niki, H.; Kagawa, K. Hydrogen Analysis in Metal Samples by Selective Detection Method Utilizing Tea Co2 Laser-Induced He Gas Plasma. Appl. Phys. A 2010, 101, 555-558.

(16) Marpaung, A. M.; Lie, Z. S.; Niki, H.; Kagawa, K.; Fukumoto, K.-i.; Ramli, M.; Abdulmadjid, S. N.; Idris, N.; Hedwig, R.; Tjia, M. O.; Pardede, M.; Suliyanti, M. M.; Jobiliong, E.; Kurniawan, K. H. Deuterium Analysis in Zircaloy Using Ps Laser-Induced Low Pressure Plasma. J. Appl. Phys. 2011, 110, 063301.

(17) Kurniawan, K. H.; Tjia, M. O.; Kagawa, K. Review of Laser-Induced Plasma, Its Mechanism, and Application to Quantitative Analysis of Hydrogen and Deuterium. Appl. Spectrosc. Rev. 2013, 49, 323-434.

(18) Rapin, W.; Meslin, P. Y.; Maurice, S.; Wiens, R. C.; Laporte, D.; Chauviré, B.; Gasnault, O.; Schröder, S.; Beck, P.; Bender, S.; Beyssac, O.; Cousin, A.; Dehouck, E.; Drouet, C.; Forni, O.; Nachon, M.; Melikechi, N.; Rondeau, B.; Mangold, N.; Thomas, N. H. Quantification of Water Content by Laser Induced Breakdown Spectroscopy on Mars. Spectrochim. Acta, Part B 2017, 130, 82-100.

(19) Rapin, W.; Bousquet, B.; Lasue, J.; Meslin, P. Y.; Lacour, J. L.; Fabre, C.; Wiens, R. C.; Frydenvang, J.; Dehouck, E.; Maurice, S.; Gasnault, O.; Forni, O.; Cousin, A. Roughness Effects on the Hydrogen Signal in Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta, Part B 2017, 137, 13-22.

(20) Zhang, Q.; Zang, L.; Huang, Y.; Gao, P.; Jiao, L.; Yuan, H.; Wang, Y. Improved Hydrogen Storage Properties of Mgh2 with Ni- Based Compounds. Int. J. Hydrogen Energy 2017, 42, 24247-24255.

(21) Zhang, J.; Yan, S.; Qu, H. Recent Progress in Magnesium Hydride Modified through Catalysis and Nanoconfinement. Int. J. Hydrogen Energy 2018, 43, 1545-1565.

(22) Zhang, X. L.; Liu, Y. F.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G. Empowering Hydrogen Storage Performance of MgH2 by Nanoengineering and Nanocatalysis. Materials Today Nano 2020, 9, 100064.

(23) Imashuku, S.; Taguchi, H.; Kawamata, T.; Fujieda, S.; Kashiwakura, S.; Suzuki, S.; Wagatsuma, K. Quantitative Lithium Mapping of Lithium-Ion Battery Cathode Using Laser- Induced Breakdown Spectroscopy. J. Power Sources 2018, 399, 186-191.

(24) Imashuku, S.; Taguchi, H.; Fujieda, S.; Suzuki, S.; Wagatsuma, K. Three-Dimensional Lithium Mapping of Graphite Anode Using Laser-Induced Breakdown Spectroscopy. Electrochim. Acta 2019, 293, 78-83.

(25) Imashuku, S.; Taguchi, H.; Kawamata, T.; Yorifuji, H.; Fujieda, S.; Kashiwakura, S.; Shinoda, K.; Suzuki, S.; Wagatsuma, K. Simpler Method for Acquiring Quantitative State-of-Charge Distribution of Lithium-Ion Battery Cathode with High Accuracy. J. Electrochem. Soc. 2019, 166, A1972-A1976.

(26) Leis, F.; Sdorra, W.; Bak Ko, J.; Niemax, K. Basic Investigations for Laser Microanalysis: I. Optical Emission Spectrometry of Laser-Produced Sample Plumes. Mikrochim. Acta 1989, 98, 185-199.

(27) Grant, K. J.; Paul, G. L. Electron Temperature and Density Profiles of Excimer Laser-Induced Plasmas. Appl. Spectrosc. 1990, 44, 1349-1354.

(28) Iida, Y. Effects of Atmosphere on Laser Vaporization and Excitation Processes of Solid Samples. Spectrochim. Acta, Part B 1990, 45, 1353-1367.

(29) Sdorra, W.; Niemax, K. Basic Investigations for Laser Microanalysis: Iii. Application of Different Buffer Gases for Laser-Produced Sample Plumes. Mikrochim. Acta 1992, 107, 319-327.

(30) Wisbrun, R.; Schechter, I.; Niessner, R.; Schroeder, H.; Kompa, K. L. Detector for Trace Elemental Analysis of Solid Environmental Samples by Laser Plasma Spectroscopy. Anal. Chem. 1994, 66, 2964-2975.

(31) Kim, D. E.; Yoo, K. J.; Park, H. K.; Oh, K. J.; Kim, D. W. Quantitative Analysis of Aluminum Impurities in Zinc Alloy by Laser- Induced Breakdown Spectroscopy. Appl. Spectrosc. 1997, 51, 22-29.

(32) Tognoni, E.; Palleschi, V.; Corsi, M.; Cristoforetti, G. Quantitative Micro-Analysis by Laser-Induced Breakdown Spectroscopy: A Review of the Experimental Approaches. Spectrochim. Acta, Part B 2002, 57, 1115-1130.

(33) Fortes, F. J.; Moros, J.; Lucena, P.; Cabalin, L. M.; Laserna, J. J. Laser-Induced Breakdown Spectroscopy. Anal. Chem. 2013, 85, 640-669.

(34) Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team, Nist Atomic Spectra Database [Online]; National Institute of Standards and Technology, 2019. https://physics.nist.gov/asd (accessed Apr 01, 2020).

(35) Noll, R. Laser-Induced Breakdown Spectroscopy : Fundamentals and Applications; Springer: Berlin, 2012.

(36) Lie, Z. S.; Pardede, M.; Hedwig, R.; Suliyanti, M. M.; Steven, E.; Maliki; Kurniawan, K. H.; Ramli, M.; Abdulmadjid, S. N.; Idris, N.; Lahna, K.; Kagawa, K.; Tjia, M. O. Intensity Distributions of Enhanced H Emission from Laser-Induced Low-Pressure He Plasma and a Suggested He-Assisted Excitation Mechanism. J. Appl. Phys. 2009, 106, 043303.

(37) Kurniawan, K. H.; Lie, T. J.; Suliyanti, M. M.; Hedwig, R.; Pardede, M.; Ramli, M.; Niki, H.; Abdulmadjid, S. N.; Idris, N.; Lahna, K.; Kusumoto, Y.; Kagawa, K.; Tjia, M. O. The Role of He in Enhancing the Intensity and Lifetime of H and D Emissions from Laser- Induced Atmospheric-Pressure Plasma. J. Appl. Phys. 2009, 105, 103303.

(38) Long, G. L.; Winefordner, J. D. Limit of Detection a Closer Look at the Iupac Definition. Anal. Chem. 2012, 55, 712A-724A.

(39) Christian, G. D.; Dasgupta, P. K.; Schug, K. A. Analytical Chemistry, 7th ed.; Wiley: New York, 2013.

(40) Sakintuna, B.; Lamaridarkrim, F.; Hirscher, M. Metal Hydride Materials for Solid Hydrogen Storage: A Review. Int. J. Hydrogen Energy 2007, 32, 1121-1140.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る