リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quantum Thermodynamics with Measurement Processes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quantum Thermodynamics with Measurement Processes

森國, 洋平 東京大学 DOI:10.15083/0002001832

2021.10.04

概要

近年、実験技術の発展により従来の熱力学が想定していないような微小な熱機関が実現されるようになっている。このような熱機関を理解するためには微小な系での熱力学を考える必要があり、現在、統計力学とミクロな力学の運動法則を用いて解析が行われている。特に、ミクロな力学として量子力学を用いたときは量子熱力学と呼ばれ、微小な量子系を対象としている。

 これまでの量子熱力学の研究においては主に、外部の操作者が行う操作を微小な量子系のハミルトニアンの時間変化で表現する方法が用いられている。この方法では、微小な量子系の時間発展はユニタリー発展で記述される。また、外部の操作者が得た仕事量は微小な量子系のエネルギー減少量と等しいと定義される。しかし、この方法は次のような問題がある:(1)微小な量子系は外部の操作者と相互作用しているため、時間発展は厳密にはユニタリー発展で記述することができない、(2)エネルギーの減少で実際の仕事を正しく記述できるか明らかではない。実際、いくつかの研究において、ユニタリー発展とエネルギー減少による仕事の定義を両立することができないことが示されている。そのため、これ以外の方法で量子熱力学を定式化する必要がある。

 新しい方法として提案されているのが、仕事取り出しの操作を量子測定とみなす方法である。この方法は熱力学の仕事取り出しと量子力学の測定の間にある類似性をもとに提案され、量子熱力学が本質的には量子測定理論であることを指摘している。この方法の量子熱力学の研究では測定の影響を積極的に取り入れている。

 本論文では、この新しい方法をもとに量子熱力学の研究を行った。まずはじめに、簡単な二準位のモデルを例に従来の方法の問題点を詳細に調べた。その結果、微小な量子系のエネルギー減少量の分散は微小な量子系の時間発展に依らず有限な値で抑えられるのに対し、微小な量子系の時間発展をユニタリー発展に近似するほど、外部の操作者が得たエネルギーの分散が大きく発散してしまうことを得た。つまり、ユニタリー発展では外部の操作者が得た仕事のゆらぎを微小な量子系のエネルギー減少のゆらぎで正しく記述することができないことがわかる。これは特に、仕事量のゆらぎの性質であるJarzynski等式が従来の方法では正しく記述されていないことを意味している。

 そこで次に、我々は新しい方法を用いてJarzynski等式がどのようになるのかを調べた。その結果、
〈𝑒𝛽𝑊〉=𝛾𝑒−𝛽Δ𝐹
というJarzynski等式を導いた。ここで、𝑊は外部の操作者が得た仕事、𝛽は逆温度、Δ𝐹は微小な量子系のヘルムホルツ自由エネルギーの変化、𝛾は外部の操作者の影響を表す量、〈⋯〉は仕事についての期待値である。この量𝛾が新しい方法を用いて現れた違いであり、従来の方法では𝛾=1となっている量である。また、先行研究により量𝛾はフィードバックの効率や不可逆性を表すことが知られている。本研究では、仕事取り出し過程がサイクルでフィードバックがない自然な熱力学的な過程である場合を計算すると常に𝛾=1となる。したがって、この量𝛾は測定の反作用がフィードバックとして働いている効果を表していると考えられる。

 本研究で導いたJarzynski等式は仕事の正しいゆらぎの性質を表現しているが、一方、微小な量子系が外部の操作者にどのように操作されているかが不明確となっている。例えば、気体が入ったシリンダーを考えたとき、外部の操作者の操作はシリンダーのピストンの動きで表現することができるが、新しい方法ではこのピストンがどのように動いているかが不明確となっている。そこで、このピストンの動きを監視するような操作を仕事取り出し過程に入れ、外部の操作者がどのような操作を行ったかがわかるように状況を考察した。その結果、Jarzynski等式の形に変更はなく、ピストンの動きを監視した影響は量𝛾に含まれることが導かれた。さらに、熱力学第二法則について計算した結果、第二法則を超えるような操作を行う確率は指数的に小さくなることが導かれた。この結果は量子熱力学で実現できる操作の制限を与えている。

参考文献

[1] S. Carnot, Reflections on the Motive Power of Fire and on Machines Fitted to Develop that Power (Paris: Bachelier, 1824).

[2] J. C. Maxwell, Theory of heat (Appleton, London, 1871), p. 330.

[3] L. Szilard, “Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen”, Zeitschrift für Physik 53, 840 (1929).

[4] E. Fermi, Thermodynamics (Dover books on physics, 1956).

[5] R. Landauer, “Irreversibility and Heat Generation in the Computing Process”, IBM Journal of Research and Development 5, 183 (1961).

[6] H. J. Groenewold, “A Problem of Information Gain by Quantal Measurements”, International Journal of Theoretical Physics 4, 327 (1971).

[7] A. Lenard, “Thermodynamical proof of the Gibbs formula for elementary quantum systems”, Journal of Statistical Physics 19, 575 (1978).

[8] W. Pusz and S. L. Woronowicz, “Passive states and KMS states for general quantum systems”, Communications in Mathematical Physics 58, 273 (1978).

[9] R. Alicki, “The quantum open system as a model of the heat engine”, Journal of Physics A: Mathematical and General 12, L103 (1979).

[10] C. Kittel and H. Kroemer, Thermal Physics, 2nd ed (W. H. Freeman, New York, 1980).

[11] C. H. Bennett, “The thermodynamics of computation—a review”, International Journal of Theoretical Physics 21, 905 (1982).

[12] M. Ozawa, “Quantum measuring processes of continuous observables”, Journal of Mathematical Physics 25, 79 (1984).

[13] J. J. Sakurai, Modern Quantum Mechanics, edited by S. F. Tuan, Rev. ed (Addison- Wesley, Reading, Mass.; Tokyo, 1994).

[14] C. Jarzynski, “Equilibrium free-energy differences from nonequilibrium measure- ments: A master-equation approach”, Physical Review E 56, 5018 (1997).

[15] C. Jarzynski, “Nonequilibrium Equality for Free Energy Differences”, Physical Re- view Letters 78, 2690 (1997).

[16] J. Kurchan, “Fluctuation theorem for stochastic dynamics”, Journal of Physics A: Mathematical and General 31, 3719 (1998).

[17] M. B. Mensky, “Decoherence and the theory of continuous quantum measure- ments”, Physics-Uspekhi 923, 55 (1998), arXiv:9812017 [quant-ph].

[18] G. E. Crooks, “Entropy production fiuctuation theorem and the nonequilibrium work relation for free energy differences”, Physical Review E 60, 2721 (1999).

[19] T. Hatano, “Jarzynski equality for the transitions between nonequilibrium steady states.”, Physical Review E 60, R5017 (1999).

[20] C. Maes, “The fiuctuation theorem as a Gibbs property”, Journal of Statistical Physics 95, 367 (1999).

[21] Y. Ishii and T. Yanagida, “Single Molecule Detection in Life Sciences”, Single Molecules 1, 5 (2000).

[22] C. Jarzynski, “Hamiltonian derivation of a detailed fiuctuation theorem”, Journal of Statistical Physics 98, 77 (2000).

[23] J. Kurchan, “A Quantum Fluctuation Theorem”, Preprint (2000), arXiv:0007360 [cond-mat].

[24] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge university press, Cambridge, 2000).

[25] H. Tasaki, “Jarzynski Relations for Quantum Systems and Some Applications”, Preprint (2000), arXiv:0009244 [cond-mat].

[26] H. Tasaki, “Statistical mechanical derivation of the second law of thermodynam- ics”, Preprint (2000), arXiv:0009206 [cond-mat].

[27] S. Yukawa, “A Quantum Analogue of the Jarzynski Equality”, Journal of the Phys- ical Society of Japan 69, 2367 (2000).

[28] D. J. Evans and D. J. Searles, “The Fluctuation Theorem”, Advances in Physics 51, 1529 (2002).

[29] H. S. Leff and A. F. Rex, eds., Maxwell’s demon 2: Entropy, classical and quantum information, computing, 2nd ed. (Institute of Physics, London, 2003).

[30] W. De Roeck and C. Maes, “Quantum version of free-energy–irreversible-work re- lations”, Physical Review E 69, 026115 (2004).

[31] C. Jarzynski, “Classical and Quantum Fluctuation Theorems for Heat Exchange”, Physical Review Letters 92, 230602 (2004).

[32] T. Kieu, “The Second Law, Maxwell’s Demon, and Work Derivable from Quantum Heat Engines”, Physical Review Letters 93, 140403 (2004).

[33] D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, and C. Bustamante, “Veri- fication of the Crooks fiuctuation theorem and recovery of RNA folding free ener- gies”, Nature 437, 231 (2005), arXiv:0512266 [cond-mat].

[34] T. Monnai, “Unified treatment of the quantum fiuctuation theorem and the Jarzyn- ski equality in terms of microscopic reversibility”, Physical Review E 72, 027102 (2005).

[35] U. Seifert, “Entropy Production along a Stochastic Trajectory and an Integral Fluc- tuation Theorem”, Physical Review Letters 95, 040602 (2005).

[36] M. Esposito and S. Mukamel, “Fluctuation theorems for quantum master equa- tions”, Physical Review E 73, 046129 (2006).

[37] C. Jarzynski, “Comparison of far-from-equilibrium work relations”, Comptes Ren- dus Physique 8, 495 (2007), arXiv:0612305 [cond-mat].

[38] R. Kawai, J. Parrondo, and C. den Broeck, “Dissipation: The Phase-Space Perspec- tive”, Physical Review Letters 98, 080602 (2007).

[39] H. T. Quan, Y.-x. Liu, C. P. Sun, and F. Nori, “Quantum thermodynamic cycles and quantum heat engines”, Physical Review E 76, 031105 (2007), arXiv:0611275 [quant-ph].

[40] P. Talkner and P. Hänggi, “The Tasaki–Crooks quantum fiuctuation theorem”, Journal of Physics A: Mathematical and Theoretical 40, F569 (2007).

[41] P. Talkner, E. Lutz, and P. Hänggi, “Fluctuation theorems: Work is not an observ- able”, Physical Review E 75, 050102 (2007), arXiv:0612305 [cond-mat].

[42] D. Andrieux and P. Gaspard, “Quantum Work Relations and Response Theory”, Physical Review Letters 230404, 7 (2008).

[43] F. G. S. L. Brandão and M. B. Plenio, “Entanglement theory and the second law of thermodynamics”, Nature Physics 4, 873 (2008).

[44] G. E. Crooks, “On the Jarzynski relation for dissipative quantum dynamics”, Jour- nal of Statistical Mechanics: Theory and Experiment 2008, P10023 (2008).

[45] C. Jarzynskia, “Nonequilibrium work relations: foundations and applications”, The European Physical Journal B 64, 331 (2008).

[46] T. Sagawa and M. Ueda, “Second Law of Thermodynamics with Discrete Quantum Feedback Control”, Physical Review Letters 100, 080403 (2008).

[47] S. Akagawa and N. Hatano, “The Exchange Fluctuation Theorem in Quantum Me- chanics”, Progress of Theoretical Physics 121, 1157 (2009).

[48] M. Campisi, P. Talkner, and P. Hänggi, “Fluctuation Theorem for Arbitrary Open Quantum Systems”, Physical Review Letters 102, 210401 (2009).

[49] M. Esposito, “Nonequilibrium fiuctuations, fiuctuation theorems, and counting statistics in quantum systems”, Reviews of Modern Physics 81, 1665 (2009).

[50] K. Jacobs, “Second law of thermodynamics and quantum feedback control: Maxwell’s demon with weak measurements”, Physical Review A 80, 012322 (2009), arXiv:0906.4146.

[51] G. Kimura, “ELEMENTARY MATHEMATICAL FRAMEWORK FOR OPEN QUANTUM d-LEVEL SYSTEMS: DECOHERENCE OVERVIEW”, in Decoherence suppression in quantum systems 2008, edited by M. Nakahara, R. Rahimi, and A. SaiToh (2009), pp. 1–51.

[52] O. Maroney, “Generalizing Landauer’s principle”, Physical Review E 79, 031105 (2009).

[53] K. Maruyama, F. Nori, and V. Vedral, “Colloquium: The physics of Maxwell’s de- mon and information”, Reviews of Modern Physics 81, 1 (2009).

[54] T. Sagawa and M. Ueda, “Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure”, Physical Review Letters 102, 250602 (2009).

[55] M. Campisi, P. Talkner, and P. Hänggi, “Fluctuation Theorems for Continuously Monitored Quantum Fluxes”, Physical Review Letters 105, 140601 (2010).

[56] M. Esposito, K. Lindenberg, and C. Van den Broeck, “Entropy production as cor- relation between system and reservoir”, New Journal of Physics 12, 013013 (2010), arXiv:0908.1125.

[57] H.-H. Hasegawa, J. Ishikawa, K. Takara, and D. Driebe, “Generalization of the sec- ond law for a nonequilibrium initial state”, Physics Letters A 374, 1001 (2010), arXiv:0907.1569.

[58] J. M. Horowitz and S. Vaikuntanathan, “Nonequilibrium detailed fiuctuation the- orem for repeated discrete feedback”, Physical Review E 82, 061120 (2010).

[59] S. Nakamura et al., “Nonequilibrium Fluctuation Relations in a Quantum Coher- ent Conductor”, Physical Review Letters 104, 080602 (2010).

[60] M. Ponmurugan, “Generalized detailed fiuctuation theorem under nonequilib- rium feedback control”, Physical Review E 82, 031129 (2010).

[61] J. Ren, P. Hänggi, and B. Li, “Berry-phase-induced heat pumping and its impact on the fiuctuation theorem”, Physical review letters 170601, 1 (2010).

[62] T. Sagawa and M. Ueda, “Generalized Jarzynski Equality under Nonequilibrium Feedback Control”, Physical Review Letters 104, 090602 (2010).

[63] K. Takara, H.-H. Hasegawa, and D. Driebe, “Generalization of the second law for a transition between nonequilibrium states”, Physics Letters A 375, 88 (2010), arXiv:0907.1569.

[64] J. Teifel and G. Mahler, “Limitations of the quantum Jarzynski estimator: Boundary switching processes”, European Physical Journal B 75, 275 (2010).

[65] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, “Experimental demon- stration of information-to-energy conversion and validation of the generalized Jarzynski equality”, Nature Physics 6, 988 (2010), arXiv:1009.5287.

[66] M. Campisi, P. Hänggi, and P. Talkner, “Colloquium: Quantum fiuctuation rela- tions: Foundations and applications”, Reviews of Modern Physics 83, 771 (2011).

[67] M. Campisi, P. Talkner, and P. Hänggi, “Infiuence of measurements on the statistics of work performed on a quantum system”, Physical Review E 83, 041114 (2011), arXiv:1101.2404.

[68] S. De Liberato and M. Ueda, “Carnot’s theorem for nonthermal stationary reser- voirs”, Physical Review E 84, 051122 (2011).

[69] M. Esposito and C. Van den Broeck, “Second law and Landauer principle far from equilibrium”, Europhysics Letters 95, 40004 (2011), arXiv:1104.5165.

[70] S. W. Kim, T. Sagawa, S. De Liberato, and M. Ueda, “Quantum Szilard Engine”, Physical Review Letters 106, 070401 (2011).

[71] Y. Morikuni and H. Tasaki, “Quantum Jarzynski-Sagawa-Ueda relations”, Journal of Statistical Physics 143, 1 (2011), arXiv:1012.2753.

[72] S. Nakamura et al., “Fluctuation theorem and microreversibility in a quantum co- herent conductor”, Physical Review B 83, 155431 (2011).

[73] J. M. R. Parrondo and J. M. Horowitz, “Maxwell’s demon in the quantum world”, Physics 4, 13 (2011).

[74] T. Sagawa, “Hamiltonian Derivations of the Generalized Jarzynski Equalities un- der Feedback Control”, Journal of Physics: Conference Series 297, 012015 (2011).

[75] A. Bednorz, W. Belzig, and A. Nitzan, “Nonclassical time correlation functions in continuous quantum measurement”, New Journal of Physics 14, 013009 (2012).

[76] S. Deffner and E. Lutz, “Information free energy for nonequilibrium states”, Preprint (2012), arXiv:1201.3888.

[77] D. Kafri and S. Deffner, “Holevo’s bound from a general quantum fiuctuation the- orem”, Physical Review A 86, 044302 (2012).

[78] H. T. Quan and C. Jarzynski, “Validity of nonequilibrium work relations for the rapidly expanding quantum piston”, Physical Review E 85, 031102 (2012), arXiv:arXiv:1112.5798v1.

[79] S. Rana, S. Lahiri, and A. M. Jayannavar, “Quantum Jarzynski equality with mul- tiple measurement and feedback for isolated system”, Pramana 79, 233 (2012).

[80] T. Sagawa, “Second law-like inequalities with quantum relative entropy: an in- troduction”, in Lectures on quantum computing, thermodynamics and statistical physics, edited by M. Nakahara and S. Tanaka (World Scientific, 2012) Chap. 3, pp. 125–190, arXiv:1202.0983.

[81] T. Sagawa, “Thermodynamics of information processing in small systems”, Progress of Theoretical Physics 127, 1 (2012).

[82] T. Sagawa and M. Ueda, “Information Thermodynamics: Maxwell’s Demon in Nonequilibrium Dynamics”, in Nonequilibrium statistical physics of small systems: fluctuation relations and beyond, edited by R. Klages, W. Just, and C. Jarzynski (Wiley-VCH, Weinheim, 2012), arXiv:1111.5769.

[83] U. Seifert, “Stochastic thermodynamics, fiuctuation theorems and molecular ma- chines.”, Reports on progress in physics. Physical Society (Great Britain) 75, 126001 (2012), arXiv:1205.4176.

[84] T. Albash, D. A. Lidar, M. Marvian, and P. Zanardi, “Fluctuation theorems for quan- tum processes”, Physical Review E 88, 032146 (2013), arXiv:1212.6589.

[85] J. Anders and V. Giovannetti, “Thermodynamics of discrete quantum processes”, New Journal of Physics 15, 033022 (2013), arXiv:1211.0183.

[86] M. Campisi, “Quantum fiuctuation relations for ensembles of wave functions”, New Journal of Physics 15, 115008 (2013), arXiv:1306.5557.

[87] S. Deffner, “Quantum entropy production in phase space”, Europhysics Letters 103, 30001 (2013), arXiv:1307.3183.

[88] K. Funo, Y. Watanabe, and M. Ueda, “Integral quantum fiuctuation theorems un- der measurement and feedback control”, Physical Review E 88, 052121 (2013), arXiv:1307.2362.

[89] M. Horodecki and J. Oppenheim, “Fundamental limitations for quantum and nanoscale thermodynamics”, Nature Communications 4, 1 (2013).

[90] J. V. Koski, T. Sagawa, O.-P. Saira, Y. Yoon, A. Kutvonen, P. Solinas, M. Möttönen, T. Ala-Nissila, and J. P. Pekola, “Distribution of entropy production in a single- electron box”, Nature Physics 9, 644 (2013).

[91] B. Leggio, A. Napoli, A. Messina, and H.-P. Breuer, “Entropy production and in- formation fiuctuations along quantum trajectories”, Physical Review A 88, 042111 (2013), arXiv:1305.6733v2.

[92] Y. Morikuni and H. Tajima, “Quantum Jarzynski equalities for the energy costs of the information processes”, Preprint (2013), arXiv:1312.6022.

[93] H. Tajima, “Mesoscopic Thermodynamics based on Quantum Information The- ory”, Ph. D. Thesis (The University of Tokyo, 2013).

[94] H. Tajima, “Minimal energy cost of thermodynamic information processes only with entanglement transfer”, Preprint (2013), arXiv:1311.1285.

[95] H. Tajima, “Second law of information thermodynamics with entanglement trans- fer”, Physical Review E 88, 042143 (2013), arXiv:1212.0407.

[96] J. Åberg, “Catalytic Coherence”, Physical Review Letters 113, 150402 (2014), arXiv:1304.1060.

[97] S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H. T. Quan, and K. Kim, “Experimental test of the quantum Jarzynski equality with a trapped-ion system”, Nature Physics 11, 193 (2014), arXiv:1409.4485.

[98] T. B. Batalhão et al., “Experimental Reconstruction of Work Distribution and Study of Fluctuation Relations in a Closed Quantum System”, Physical Review Letters 113, 140601 (2014).

[99] J. Goold and K. Modi, “Energetic fiuctuations in an open quantum process”, Preprint (2014), arXiv:1407.4618.

[100] Y. Murashita, K. Funo, and M. Ueda, “Nonequilibrium equalities in absolutely ir- reversible processes”, Physical Review E 90, 042110 (2014), arXiv:1401.4494.

[101] A. E. Rastegin and K. Życzkowski, “Jarzynski equality for quantum stochastic maps”, Physical Review E 89, 012127 (2014), arXiv:1307.5370.

[102] P. Skrzypczyk, A. J. Short, and S. Popescu, “Work extraction and thermodynam- ics for individual quantum systems”, Nature Communications 5, 4185 (2014), arXiv:1307.1558.

[103] H. Tajima, “A New Second Law of Information Thermodynamics Using Entan- glement Measure”, in Proceedings of the 12th asia pacific physics conference, Vol. 012129 (2014), pp. 1–4.

[104] G. Watanabe, B. P. Venkatesh, P. Talkner, M. Campisi, and P. Hänggi, “Quantum fiuctuation theorems and generalized measurements during the force protocol”, Physical Review E 89, 032114 (2014), arXiv:1312.7104.

[105] F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, “The second laws of quantum thermodynamics”, Proceedings of the National Academy of Sciences 112, 3275 (2015), arXiv:1305.5278.

[106] K. Funo, Y. Murashita, and M. Ueda, “Quantum nonequilibrium equalities with absolute irreversibility”, New Journal of Physics 17, 075005 (2015).

[107] Z. Gong and H. T. Quan, “Jarzynski equality, Crooks fiuctuation theorem, and the fiuctuation theorems of heat for arbitrary initial states”, Physical Review E - Statis- tical, Nonlinear, and Soft Matter Physics 92 (2015), arXiv:1503.05036.

[108] M. Hayashi, S. Ishizaka, A. Kawachi, G. Kimura, and T. Ogawa, Introduction to Quantum Information Science, Graduate Texts in Physics (Springer Berlin Heidel- berg, Berlin, Heidelberg, 2015).

[109] C. Jarzynski, H. T. Quan, and S. Rahav, “Quantum-Classical Correspondence Prin- ciple for Work Distributions”, Physical Review X 5, 031038 (2015), arXiv:1507 . 05763.

[110] A. S. L. Malabarba, A. J. Short, and P. Kammerlander, “Clock-driven quantum ther- mal engines”, New Journal of Physics 17, 045027 (2015).

[111] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, “Thermodynamics of informa- tion”, Nature Physics 11, 131 (2015).

[112] B. Prasanna Venkatesh, G. Watanabe, and P. Talkner, “Quantum fiuctuation the- orems and power measurements”, New Journal of Physics 17, 075018 (2015), arXiv:1503.03228.

[113] N. Shiraishi and T. Sagawa, “Fluctuation theorem for partially masked nonequilib- rium dynamics”, Physical Review E 91, 012130 (2015), arXiv:1403.4018.

[114] H. Tasaki, “Quantum Statistical Mechanical Derivation of the Second Law of Ther- modynamics: A Hybrid Setting Approach”, Physical Review Letters 116, 170402 (2016), arXiv:1511.01999.

[115] H. Tasaki, Typicality of Thermal Equilibrium and Thermalization in Isolated Macro- scopic Quantum Systems, Vol. 163, 5 (Springer US, 2016), pp. 937–997, arXiv:1507. 06479.

[116] S. Vinjanampathy and J. Anders, “Quantum thermodynamics”, Contemporary Physics 57, 545 (2016).

[117] M. Hayashi and H. Tajima, “Measurement-based formulation of quantum heat en- gines”, Physical Review A 95, 032132 (2017), arXiv:1504.06150v4.

[118] E. Iyoda, K. Kaneko, and T. Sagawa, “Fluctuation Theorem for Many-Body Pure Quantum States”, Physical Review Letters 119, 100601 (2017), arXiv:1712.05172.

[119] Y. Morikuni, H. Tajima, and N. Hatano, “Quantum Jarzynski equality of measurement-based work extraction”, Physical Review E 95, 032147 (2017), arXiv:1610.06316.

[120] M. Perarnau-Llobet, E. Bäumer, K. V. Hovhannisyan, M. Huber, and A. Acin, “No- Go Theorem for the Characterization of Work Fluctuations in Coherent Quantum Systems”, Physical Review Letters 118, 070601 (2017), arXiv:1606.08368.

[121] J. Åberg, “Fully Quantum Fluctuation Theorems”, Physical Review X 8, 011019 (2018), arXiv:1601.01302.

[122] H. Tajima, N. Shiraishi, and K. Saito, “Uncertainty Relations in Implementation of Unitary Operations”, Physical Review Letters 121, 110403 (2018).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る