リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Bioimprinting as a Receptor for Detection of Kwakhurin」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Bioimprinting as a Receptor for Detection of Kwakhurin

Sakamoto, Seiichi 坂元, 政一 サカモト, セイイチ Minami, Kei 南, 圭 ミナミ, ケイ Nuntawong, Poomraphie Yusakul, Gorawit Putalun, Waraporn Tanaka, Hiroyuki 田中, 宏幸 タナカ, ヒロユキ Fujii, Shunsuke 藤井, 俊輔 フジイ, シュンスケ Morimoto, Satoshi 森元, 聡 モリモト, サトシ 九州大学

2022.08.01

概要

Bioimprinting was performed against ovalbumin (OVA) to confer its binding cavities for kwakhurin (Kwa), an isoflavonoid, produced solely by Pueraria candollei var. mirifica (P. candollei). The characterization of bioimprinted-OVA (biOVA), evaluated by an enzyme-linked immunosorbent assay (ELISA), revealed that it functioned as a specific receptor for Kwa. Using biOVA, two systems, i.e., an indirect competitive ELISA (icELISA) and the even simpler and more rapid competitive enzyme-linked bioimprinted-protein assay (cELBIA), were developed as novel techniques for the quantitative analysis of Kwa in P. candollei and its related products. The two analysis methods were found to have limits of detection (LOD) of 4.0 and 2.5 µg/mL, respectively. The high reliability of the developed icELISA and cELBIA using biOVA was also demonstrated by various validation analyses. Subsequently, bioimprinting was performed using eight other proteins to investigate them as candidate scaffolds for the generation of binding cavities for Kwa. Interestingly, two bioimprinted-IgG monoclonal antibodies (biMAbs) recognized Kwa, but their original binding affinity to hapten was lost. That is, the MAbs obtained a new binding ability to Kwa in exchange for their original binding affinity, raising the possibility that biMAb could be alternatively used as a probe for the quantitative analysis of Kwa as well as biOVA. This is the first report of small molecules recognition by MAbs used as proteins for bioimprinting.

この論文で使われている画像

参考文献

1. Urasopon, N.; Hamada, Y.; Cherdshewasart, W.; Malaivijitnond, S. Preventive effects of Pueraria mirifica on bone loss in ovari‐ ectomized rats. Maturitas 2008, 59, 137−148. https://doi.org/10.1016/j.maturitas.2008.01.001.

2. Kittivanichkul, D.; Charoenphandhu, N.; Khemawoot, P.; Malaivijitnond, S. Pueraria mirifica alleviates cortical bone loss in nat‐ urally menopausal monkeys. J. Endocrinol. 2016, 231, 121−133. https://doi.org/10.1530/JOE‐16‐0277.

3. Suthon, S.; Jaroenporn, S.; Charoenphandhu, N.; Suntornsaratoon, P.; Malaivijitnond, S. Anti‐osteoporotic effects of Pueraria candollei var. mirifica on bone mineral density and histomorphometry in estrogen‐deficient rats. J. Nat. Med. 2016, 70, 225−233. https://doi.org/10.1007/s11418‐016‐0965‐5.

4. Sookvanichsilp, N.; Soonthornchareonnon, N.; Boonleang, C. Estrogenic activity of the dichloromethane extract from Pueraria mirifica. Fitoterapia 2008, 79, 509−514. https://doi.org/10.1016/j.fitote.2008.05.006.

5. Cherdshewasart, W.; Panriansaen, R.; Picha, P. Pretreatment with phytoestrogen‐rich plant decreases breast tumor incidence and exhibits lower profile of mammary ERalpha and ERbeta. Maturitas 2007, 58, 174−181. https://doi.org/10.1016/j.maturi‐ tas.2007.08.001.

6. Ratanachamnong, P.; Phivthong‐Ngam, L.; Namchaiw, P. Daily white kwao krua dietary supplement alleviates LDL oxidative susceptibility, plasma LDL level and improves vasculature in a hypercholesterolemia rabbit model. J. Tradit. Complement. Med. 2020, 10, 496−503. https://doi.org/10.1016/j.jtcme.2020.05.001.

7. Sucontphunt, A.; De‐Eknamkul, W.; Nimmannit, U.; Dan Dimitrijevich, S.; Gracy, R.W. Protection of HT22 neuronal cells against glutamate toxicity mediated by the antioxidant activity of Pueraria candollei var. mirifica extracts. J. Nat. Med. 2011, 65, 1−8. https://doi.org/10.1007/s11418‐010‐0442‐5.

8. Chulikhit, Y.; Sukhano, W.; Daodee, S.; Putalun, W.; Wongpradit, R.; Khamphukdee, C.; Umehara, K.; Noguchi, H.; Matsumoto, K.; Monthakantirat, O. Effects of Pueraria candollei var mirifica (Airy Shaw and Suvat.) Niyomdham on ovariectomy‐induced cognitive impairment and oxidative stress in the mouse brain. Molecules 2021, 26, 3442. https://doi.org/10.3390/mole‐ cules26113442.

9. Anukulthanakorn, K.; Parhar, I.S.; Jaroenporn, S.; Kitahashi, T.; Watanbe, G.; Malaivijitnond, S. Neurotherapeutic effects of Pueraria mirifica extract in early‐ and late‐stage cognitive impaired rats. Phytother. Res. 2016, 30, 929−939. https://doi.org/10.1002/ptr.5595.

10. Cain, J.C. Miroestrol: An oestrogen from the plant Pueraria mirifica. Nature 1960, 188, 774−777. https://doi.org/10.1038/188774a0.

11. Chansakaow, S.; Ishikawa, T.; Seki, H.; Sekine, K.; Okada, M.; Chaichantipyuth, C. Identification of deoxymiroestrol as the actual rejuvenating principle of “Kwao Keur”, Pueraria mirifica. The known miroestrol may be an artifact. J. Nat. Prod. 2000, 63, 173−175. https://doi.org/10.1021/np990547v.

12. Yusakul, G.; Udomsin, O.; Juengwatanatrakul, T.; Tanaka, H.; Chaichantipyuth, C.; Putalun, W. Highly selective and sensitive determination of deoxymiroestrol using a polyclonal antibody‐based enzyme‐linked immunosorbent assay. Talanta 2013, 114, 73−78. https://doi.org/10.1016/j.talanta.2013.04.011.

13. Chansakaow, S.; Ishikawa, T.; Sekine, K.; Okada, M.; Higuchi, Y.; Kudo, M.; Chaichantipyuth, C. Isoflavonoids from Pueraria mirifica and their estrogenic activity. Planta Med. 2000, 66, 572−575. https://doi.org/10.1055/s‐2000‐8603.

14. Pongkitwitoon, B.; Sakamoto, S.; Tanaka, H.; Tsuchihashi, R.; Kinjo, J.; Morimoto, S.; Putalun, W. Development of an enzyme‐ linked immunosorbent assay to determine puerarin and its aglycone daidzein. J. Nat. Med. 2011, 65, 31−36. https://doi.org/10.1007/s11418‐010‐0448‐z.

15. Yusakul, G.; Togita, R.; Minami, K.; Chanpokapaiboon, K.; Juengwatanatrakul, T.; Putalun, W.; Tanaka, H.; Sakamoto, S.; Morimoto, S. An indirect competitive enzyme‐linked immunosorbent assay toward the standardization of Pueraria candollei based on its unique isoflavonoid, kwakhurin. Fitoterapia 2019, 133, 23−28. https://doi.org/10.1016/j.fitote.2018.12.010.

16. Chanpokapaiboon, K.; Khoonrit, P.; Yusakul, G.; Juengwatanatrakul, T.; Putalun, W.; Tanaka, H.; Sakamoto, S.; Morimoto, S. A recombinant Fab antibody against kwakhurin as a tool for sensitive indirect competitive ELISA. Curr. Pharm. Biotechnol. 2018, 19, 1170−1176. https://doi.org/10.2174/1389201020666181226105223.

17. Sakamoto, S.; Eto, R.; Nuntawong, P.; Yusakul, G.; Juengwatanatrakul, T.; Putalun, W.; Fujii, S.; Tanaka, H.; Morimoto, S. Kwakhurin‐magnetic particles conjugates enable fast enzyme immunoassay for the detection of kwakhurin in Pueraria candollei. Phytochem. Anal. 2020, 31, 930−936. https://doi.org/10.1002/pca.2964.

18. Phaisan, S.; Yusakul, G.; Nuntawong, P.; Sakamoto, S.; Putalun, W.; Morimoto, S.; Tanaka, H. Immunochromatographic assay for the detection of kwakhurin and its application for the identification of Pueraria candollei var. mirifica (Airy Shaw & Suvat.) Niyomdham. Phytochem. Anal. 2021, 32, 503−511. https://doi.org/10.1002/pca.2998.

19. Sakamoto, S.; Putalun, W.; Vimolmangkang, S.; Phoolcharoen, W.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Enzyme‐linked im‐ munosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 2018, 72, 32−42. https://doi.org/10.1007/s11418‐017‐1144‐z.

20. Nuntawong, P.; Putalun, W.; Tanaka, H.; Morimoto, S.; Sakamoto, S. Lateral flow immunoassay for small‐molecules detection in phytoproducts: A review. J. Nat. Med. 2022, 76, 521−545. https://doi.org/10.1007/s11418‐022‐01605‐6.

21. Vlatakis, G.; Andersson, L.I.; Müller, R.; Mosbach, K. Drug assay using antibody mimics made by molecular imprinting. Nature 1993, 361, 645−647. https://doi.org/10.1038/361645a0.

22. Mingarro, I.; Abad, C.; Braco, L. Interfacial activation‐based molecular bioimprinting of lipolytic enzymes. Proc. Natl. Acad. Sci. USA 1995, 92, 3308−3312. https://doi.org/10.1073/pnas.92.8.3308.

23. Gutierrez, A.; Hedström, M.; Mattiasson, B. Bioimprinting as a tool for the detection of aflatoxin B1 using a capacitive biosensor. Biotechnol. Rep. 2016, 11, 12−17. https://doi.org/10.1016/j.btre.2016.05.006.

24. Beloglazova, N.; Lenain, P.; Tessier, M.; Goryacheva, I.; Hens, Z.; Saeger, S.D. Bioimprinting for multiplex luminescent detection of deoxynivalenol and zearalenone. Talanta 2019, 192, 169−174. https://doi.org/10.1016/j.talanta.2018.09.042.

25. Pidenko, P.; Zhang, H.; Lenain, P.; Goryacheva, I.; Saeger, S.D.; Beloglazova, N. Imprinted proteins as a receptor for detection of zearalenone. Anal. Chim. Acta. 2018, 1040, 99−104. https://doi.org/10.1016/j.aca.2018.07.062.

26. Fujii, S.; Morinaga, O.; Uto, T.; Nomura, S.; Shoyama, Y. Simultaneous determination of glycyrrhizin and liquiritin in licorice roots and Kampo medicines by combination enzyme‐linked immunosorbent assay using anti‐glycyrrhizin and anti‐liquiritin monoclonal antibodies. J. Immunoassay. Immunochem. 2017, 38, 285–298. https://doi.org/10.1080/15321819.2016.1260586.

27. Sakamoto, S.; Yusakul, G.; Tsuneura, Y.; Putalun, W.; Usui, K.; Miyamoto, T.; Tanaka, H.; Morimoto, S. Sodium periodate‐ mediated conjugation of harringtonine enabling the production of a highly specific monoclonal antibody, and the development of a sensitive quantitative analysis method. Analyst 2017, 142, 1140−1148. https://doi.org/10.1039/C6AN02751B.

28. Weiler, E.W.; Zenk, M.H. Radioimmunoassay for the detection of digoxin and related compounds in Digitalis lanata. Phytochem‐ istry 1976, 15, 1537–1545. https://doi.org/10.1016/S0031‐9422(00)88933‐5.

29. Nuntawong, P.; Tanaka, H.; Sakamoto, S.; Morimoto, S. ELISA for the detection of the prohibited doping agent higenamine. Planta Med. 2020, 86, 760–766. https://doi.org/10.1055/a‐1181‐2084.

30. Sakamoto, S.; Wada, S.; Morita, Y.; Yamaguchi, T.; Tanaka, H.; Morimoto, S. Magnetic particles‐based enzyme immunoassay for rapid determination of secoiridoid glycoside, amarogentin. Talanta 2019, 194, 731−736. https://doi.org/10.1016/j.ta‐ lanta.2018.11.001.

31. Ahirwar, R.; Bariar, S.; Balakrishnana, A.; Nahar, P. BSA blocking in enzyme‐linked immunosorbent assays is a non‐mandatory step: A perspective study on mechanism of BSA blocking in common ELISA protocols. RSC Adv. 2015, 5, 100077−100083. https://doi.org/10.1039/C5RA20750A.

32. Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem. 1980, 88, 1895−1898.

33. Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105−132. https://doi.org/10.1016/0022‐2836(82)90515‐0.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る