リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Orbital Evolution of Close-in Super-Earths Driven by Atmospheric Escape」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Orbital Evolution of Close-in Super-Earths Driven by Atmospheric Escape

Fujita, Naho Hori, Yasunori Sasaki, Takanori 京都大学 DOI:10.3847/1538-4357/ac558c

2022.04.01

概要

The increasing number of super-Earths close to their host stars have revealed a scarcity of close-in small planets with 1.5–2.0 R⊕ in the radius distribution of Kepler planets. The atmospheric escape of super-Earths by photoevaporation can explain the origin of the observed “radius gap.” Many theoretical studies have considered the in situ mass loss of a close-in planet. Planets that undergo atmospheric escape, however, move outward due to the change in the orbital angular momentum of their star–planet systems. In this study, we calculate the orbital evolution of an evaporating super-Earth with a H₂/He atmosphere around FGKM-type stars under stellar X-ray and extreme-UV irradiation (XUV). The rate of increase in the orbital radius of an evaporating planet is approximately proportional to that of the atmospheric mass loss during a high stellar XUV phase. We show that super-Earths with a rocky core of ≲10 M⊕ and a H₂/He atmosphere at ≲0.03–0.1 au (≲0.01–0.03 au) around G-type stars (M-type stars) are prone to outward migration driven by photoevaporation. Although the changes in the orbits of the planets would be small, they would rearrange the orbital configurations of compact, multiplanet systems, such as the TRAPPIST-1 system. We also find that the radius gap and the so-called “Neptune desert” in the observed population of close-in planets around FGK-type stars still appear in our simulations. On the other hand, the observed planet population around M-type stars can be reproduced only by a high stellar XUV luminosity model.

この論文で使われている画像

参考文献

Adams, F. C. 2011, ApJ, 730, 27

Alexander, M. E., Chau, W. Y., & Henriksen, R. N. 1976, ApJ, 204, 879

Anderson, O. L., Dubrovinsky, L., Saxena, S. K., & LeBihan, T. 2001, GeoRL,

28, 399

Benneke, B., Knutson, H. A., Lothringer, J., et al. 2019, NatAs, 3, 813

Bonfils, X., Delfosse, X., Udry, S., et al. 2013, A&A, 549, A109

Boué, G., Figueira, P., Correia, A. C. M., & Santos, N. C. 2012, A&A, 537, L3

Cloutier, R., & Menou, K. 2020, AJ, 159, 211

Debrecht, A., Carroll-Nellenback, J., Frank, A., et al. 2020, MNRAS,

493, 1292

Dressing, C. D., & Charbonneau, D. 2015, ApJ, 807, 45

Erkaev, N. V., Kulikov, Y. N., Lammer, H., et al. 2007, A&A, 472, 329

Fulton, B. J., & Petigura, E. A. 2018, AJ, 156, 264

Fulton, B. J., Petigura, E. A., Howard, A. W., et al. 2017, AJ, 154, 109

Gaidos, E., Conrad, C. P., Manga, M., & Hernlund, J. 2010, ApJ, 718, 596

Ginzburg, S., & Sari, R. 2017, MNRAS, 469, 278

Goldreich, P., & Soter, S. 1966, Icar, 5, 375

Guo, J. H. 2013, ApJ, 766, 102

Hirano, T., Livingston, J. H., Fukui, A., et al. 2021, AJ, 162, 161

Hori, Y., & Ogihara, M. 2020, ApJ, 889, 77

Howard, A. W., Marcy, G. W., Bryson, S. T., et al. 2012, ApJS, 201, 15

Ionov, D. E., & Shematovich, V. I. 2015, SoSyR, 49, 339

Jackson, A. P., Davis, T. A., & Wheatley, P. J. 2012, MNRAS, 422, 2024

Jackson, B., Jensen, E., Peacock, S., Arras, P., & Penev, K. 2016, CeMDA,

126, 227

Karki, B. B., Wentzcovitch, R. M., de Gironcoli, S., & Baroni, S. 2000,

PhRvB, 62, 14750

Khodachenko, M. L., Shaikhislamov, I. F., Lammer, H., & Prokopov, P. A.

2015, ApJ, 813, 50

Kreidberg, L., Bean, J. L., Désert, J.-M., et al. 2014, Natur, 505, 69

Livio, M., & Soker, N. 1984, MNRAS, 208, 763

Lopez, E. D., & Fortney, J. J. 2014, ApJ, 792, 1

Matsumoto, Y., & Kokubo, E. 2017, AJ, 154, 27

Matsumoto, Y., & Ogihara, M. 2020, ApJ, 893, 43

Mayor, M., Marmier, M., Lovis, C., et al. 2011, arXiv:1109.2497

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る