リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Atomic Oxygen Ion‐Neutral Collision Frequency Models at Ionospheric Temperatures」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Atomic Oxygen Ion‐Neutral Collision Frequency Models at Ionospheric Temperatures

Ieda, A. 名古屋大学

2021.01

概要

The collision between atomic oxygen and its first positive ion plays a major role in Earth's F region ionosphere. An accurate corresponding collision frequency model is necessary to quantitatively understand the ionosphere. However, the widely used classic Banks theoretical model typically provides a collision frequency that is 30% lower than the expectation from ionospheric observations. Accordingly, the classic collision frequency is often adjusted by multiplying it by a constant known as the Burnside factor. This correction-factor model adopted the classic model as its basis due to a misunderstanding that the classic model was based on a laboratory experiment; that is, the correction factor was originally meant to compensate for laboratory contamination. In this study, a collision frequency model is constructed based on the laboratory experiment, and the resultant laboratory-based model is found to be consistent with ionospheric observations. In this construction, the impact of laboratory contamination is determined to be small (7%) and is mostly canceled by a misinterpretation regarding the conventional definitions of energy. Thus, the 30% difference is mainly caused by a theoretical error in the classic model itself. This error is energy-dependent and corrected by the later wide-energy theoretical model. Thus, the classic model cannot be corrected by a temperature-independent constant and should be replaced by the later model.

参考文献

Adachi, K., Nozawa, S., Ogawa, Y., Brekke, A., Hall, C., & Fujii, R. (2017). Evaluation of a method to derive ionospheric conductivities using two auroral emissions (428 and 630 nm) measured with a photometer at Tromsø (69.6 degrees N). Earth Planets and Space, 69, 90. https://doi.org/10.1186/s40623-017-0677-4

Anderson, C., Kosch, M. J., Nicolls, M. J., & Conde, M. (2013). Ion-neutral coupling in Earth's thermosphere, estimated from concurrent radar and optical observations above Alaska. Journal of Atmospheric and Solar – Terrestrial Physics, 105, 313–324. https://doi. org/10.1016/j.jastp.2013.04.005

Banks, P. (1966). Collision frequencies and energy transfer—Ions. Planetary and Space Science, 14(11), 1105–1122. https://doi. org/10.1016/0032-0633(66)90025-0

Banks, P. M., & Kockarts, G. (1973). Aeronomy, Part A. New York, NY: Academic Press.

Brekke, A. (2013). Physics of the upper polar atmosphere (2nd ed.). Heidelberg: Springer.

Brekke, A., & Hall, C. (1988). Auroral ionospheric quiet summer time conductances. Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 6(4), 361–375.

Buonsanto, M. J., Sipler, D. P., Davenport, G. B., & Holt, J. M. (1997). Estimation of the O+–O collision frequency from coincident radar and Fabry-Perot observations at Millstone Hill. Journal of Geophysical Research, 102(A8), 17267–17274. https://doi.org/10.1029/97ja01300

Burnside, R. G., Tepley, C. A., & Wickwar, V. B. (1987). The O+–O collision cross-section: Can it be inferred from aeronomical measurements. Annales Geophysicae, 5A(6), 343–349.

Capitelli, M., Lamanna, U. T., Guidotti, C., & Arrighini, G. P. (1977). The gerade-ungerade splitting of N2+ potentials: Effects on resonant charge transfer cross sections of nitrogen atoms. Chemical Physics, 19(2), 269–278. https://doi.org/10.1016/0301-0104(77)85138-0

Carlson, H. C., & Harper, R. M. (1977). An experimental estimate of O+–O resonant charge transfer cross section, collision frequency, and energy-transfer rate. Journal of Geophysical Research, 82(7), 1144–1148. https://doi.org/10.1029/JA082i007p01144

COESA. (1976). U.S. standard atmosphere, 1976. Washington, DC: U.S. government printing office.

Dalgarno, A.. (1958a). Ambipolar diffusion in the F2-layer. Journal of Atmospheric and Terrestrial Physics, 12(2,3), 219–220. https://doi. org/10.1016/0021-9169(58)90096-5

Dalgarno, A.. (1958b). The mobilities of ions in their parent gases. Philosophical Transactions of the Royal Society of London – Series A: Mathematical and Physical Sciences, 250(982), 426–439. https://doi.org/10.1098/rsta.1958.0003

Dalgarno, A.. (1964). Ambipolar diffusion in the F-region. Journal of Atmospheric and Terrestrial Physics, 26(9), 939. https://doi. org/10.1016/0021-9169(64)90236-3

Dalgarno, A., McDowell, M. R. C., & Williams, A. (1958). The mobilities of ions in unlike gases. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 250(982), 411–425. https://doi.org/10.1098/rsta.1958.0002

Dang, T., Lei, J., Dou, X., & Wan, W. (2015). Feasibility study on the derivation of the O+–O collision frequency from ionospheric fieldaligned observations. Journal of Geophysical Research: Space Physics, 120(7), 6029–6035. https://doi.org/10.1002/2015ja020987

Dyson, P. L., Davies, T. P., Parkinson, M. L., Reeves, A. J., Richards, P. G., & Fairchild, C. E. (1997). Thermospheric neutral winds at southern mid-latitudes: A comparison of optical and ionosonde hmF2 methods. Journal of Geophysical Research, 102(A12), 27189–27196. https://doi.org/10.1029/97ja02138

Fang, T.-W., Anderson, D., Fuller-Rowell, T., Akmaev, R., Codrescu, M., Millward, G., et al. (2013). Comparative studies of theoretical models in the equatorial ionosphere. In J. Huba, R. Schunk, & G. Khazanov (Eds.), Modeling the ionosphere-thermosphere system, geophysical monograph series (Vol. 201, pp. 133–144). Washington, DC: American Geophysical Union. https://doi.org/10.1002/9781118704417.ch12

Heiche, G., & Mason, E. A. (1970). Ion mobilities with charge exchange. The Journal of Chemical Physics, 53(12), 4687–4696. https://doi. org/10.1063/1.1673997

Hickman, A. P., Medikeri-Naphade, M., Chapin, C. D., & Huestis, D. L. (1997a). Fine structure effects in the O+–O collision frequency. Geophysical Research Letters, 24(2), 119–122. https://doi.org/10.1029/96gl03797

Hickman, A. P., Medikeri-Naphade, M., Chapin, C. D., & Huestis, D. L. (1997b). Calculation of fine-structure effects in O+–O collisions. Physical Review A, 56(6), 4633–4643. https://doi.org/10.1103/PhysRevA.56.4633

Ieda, A. (2020). Ion-neutral collision frequencies for calculating ionospheric conductivity. Journal of Geophysical Research: Space Physics, 125, e2019JA027128. https://doi.org/10.1029/2019JA027128

Ieda, A., Oyama, S., Vanhamäki, H., Fujii, R., Nakamizo, A., Amm, O., et al. (2014). Approximate forms of daytime ionospheric conductance. Journal of Geophysical Research: Space Physics, 119(12), 10397–10415. https://doi.org/10.1002/2014ja020665

Joshi, P. P., Waldrop, L. S., & Brum, C. G. M. (2018). Ionospheric O+ momentum balance through charge exchange with thermospheric O atoms. Journal of Geophysical Research: Space Physics, 123(11), 9743–9761. https://doi.org/10.1029/2018ja025821

Kelley, M. C. (2009). Earth's ionosphere: Plasma physics and electrodynamics (2nd ed.). London: Elsevier.

Kiene, A., Bristow, W. A., Conde, M. G., & Hampton, D. L. (2019). High-resolution local measurements of F region ion temperatures and Joule heating rates using SuperDARN and ground-based optics. Journal of Geophysical Research: Space Physics, 124(1), 557–572. https:// doi.org/10.1029/2018ja025997

Knof, H., Mason, E. A., & Vanderslice, J. T. (1964). Interaction energies, charge exchange cross sections, and diffusion cross sections for N+–N and O+–O collisions. The Journal of Chemical Physics, 40(12), 3548–3553. https://doi.org/10.1063/1.1725050

Lindsay, B. G., Sieglaff, D. R., Smith, K. A., & Stebbings, R. F. (2001). Charge transfer of keV O+ ions with atomic oxygen. Journal of Geophysical Research, 106(A5), 8197–8203. https://doi.org/10.1029/2000ja000437

Lindsay, B. G., & Stebbings, R. F. (2005). Charge transfer cross sections for energetic neutral atom data analysis. Journal of Geophysical Research, 110(A12), A12213. https://doi.org/10.1029/2005ja011298

Lomidze, L., Scherliess, L., & Schunk, R. W. (2015). Magnetic meridional winds in the thermosphere obtained from Global Assimilation of Ionospheric Measurements (GAIM) model. Journal of Geophysical Research: Space Physics, 120(9), 8025–8044. https://doi. org/10.1002/2015ja021098

Mason, E. A., & Vanderslice, J. T. (1959). Mobility of hydrogen ions (H+,H2+,H3+) in hydrogen. Physical Review, 114(2), 497–502. https://doi.org/10.1103/PhysRev.114.497

McDonald, S. E., Lean, J. L., Huba, J. D., Joyce, G., Emmert, J. T., & Drob, D. P. (2013). Long-term simulations of the ionosphere using SAMI3. In J. Huba, R. Schunk, & G. Khazanov (Eds.), Modeling the ionosphere-thermosphere system, geophysical monograph series (Vol. 201, pp. 119–131). Washingon, DC: American Geophysical Union. https://doi.org/10.1002/9781118704417.ch11

McGranaghan, R., Knipp, D. J., Solomon, S. C., & Fang, X. (2015). A fast, parameterized model of upper atmospheric ionization rates, chemistry, and conductivity. Journal of Geophysical Research: Space Physics, 120(6), 4936–4949. https://doi.org/10.1002/2015ja021146

Nicolls, M. J., Aponte, N., Gonzalez, S. A., Sulzer, M. P., & Oliver, W. L. (2006). Daytime F region ion energy balance at Arecibo for moderate to high solar flux conditions. Journal of Geophysical Research, 111(A10), A10307. https://doi.org/10.1029/2006ja011664

Oliver, W. L., & Glotfelty, K. (1996). O+–O collision cross section and long-term F region O density variations deduced from the ionospheric energy budget. Journal of Geophysical Research, 101(A10), 21769–21784. https://doi.org/10.1029/96ja01585

Partridge, H., & Stallcop, J. R. (1986). N+–N and O+–O interaction energies, dipole transition moments, and transport cross sections. In J. N. Moss & C. D. Scott (Eds.), AIAA Progress in astronautics and aeronautics: Thermophysical aspects of re-entry flows (Vol. 103, pp. 243–260). New York, NY: AIAA.

Pesnell, W. D., Omidvar, K., & Hoegy, W. R. (1993). Momentum-transfer collision frequency of O+–O. Geophysical Research Letters, 20(13), 1343–1346. https://doi.org/10.1029/93gl01597

Pesnell, W. D., Omidvar, K., Hoegy, W. R., & Wharton, L. E. (1994). O+–O collision frequency in high-speed flows. Journal of Geophysical Research, 99(A11), 21375–21382. https://doi.org/10.1029/94ja01650

Rutherford, J. A., & Vroom, D. A. (1974). The reaction of atomic oxygen with several atmospheric ions. The Journal of Chemical Physics, 61(7), 2514–2519. https://doi.org/10.1063/1.1682371

Salah, J. E. (1993). Interim standard for the ion-neutral atomic oxygen collision frequency. Geophysical Research Letters, 20(15), 1543–1546. https://doi.org/10.1029/93gl01699

Schunk, R. W., & Nagy, A. F. (2009). Ionospheres: Physics, plasma physics, and chemistry (2nd ed.). New York, NY: Cambridge University Press.

Schunk, R. W., & Walker, J. C. G. (1973). Theoretical ion densities in lower ionosphere. Planetary and Space Science, 21(11), 1875–1896. https://doi.org/10.1016/0032-0633(73)90118-9

Stallcop, J. R. (1971). N2+ potential-energy curves. The Journal of Chemical Physics, 54(6), 2602–2605. https://doi.org/10.1063/1.1675218

Stallcop, J. R., Levin, E., & Partridge, H. (1998). Transport properties of hydrogen. Journal of Thermophysics and Heat Transfer, 12(4), 514–519. https://doi.org/10.2514/2.6370

Stallcop, J. R., & Partridge, H. (1985). N+–N long-range interaction energies and resonance charge exchange. Physical Review A, 32(1), 639–642. https://doi.org/10.1103/PhysRevA.32.639

Stallcop, J. R., Partridge, H., & Levin, E. (1991). Resonance charge transfer, transport cross sections, and collision integrals for N+(3P)–N(4S0) and O+(4S0)–O(3P) interactions. The Journal of Chemical Physics, 95(9), 6429–6439. https://doi.org/10.1063/1.461563

Stebbings, R. F., & Rutherford, J. A. (1968). Low-energy collisions between O+(4S) and H(1s). Journal of Geophysical Research, 73(3), 1035–1038. https://doi.org/10.1029/JA073i003p01035

Stebbings, R. F., Smith, A. C. H., & Ehrhardt, H. (1964). Charge transfer between oxygen atoms and O+ and H+ ions. Journal of Geophysical Research, 69(11), 2349–2355. https://doi.org/10.1029/JZ069i011p02349

Stebbings, R. F., Turner, B. R., & Rutherford, J. A. (1966). Low-energy collisions between some atmospheric ions and neutral particles. Journal of Geophysical Research, 71(3), 771–784. https://doi.org/10.1029/JZ071i003p00771

Stubbe, P. (1968). Frictional forces and collision frequencies between moving ion and neutral gases. Journal of Atmospheric and Terrestrial Physics, 30(12), 1965–1985. https://doi.org/10.1016/0021-9169(68)90004-4

Takeda, M. (2016). Long-term variation of Ampère force by geomagnetic Sq currents and thermospheric pressure difference. Journal of Geophysical Research: Space Physics, 121(11), 11407–11412. https://doi.org/10.1002/2016ja022845

Turner, B. R., Rutherford, J. A., & Compton, D. M. J. (1968). Abundance of excited ions in O+ and O2+ ion beams. The Journal of Chemical Physics, 48(4), 1602–1608. https://doi.org/10.1063/1.1668882

Vickers, H., Kosch, M. J., Sutton, E., Ogawa, Y., & La Hoz, C. (2013). Thermospheric atomic oxygen density estimates using the EISCAT Svalbard Radar. Journal of Geophysical Research: Space Physics, 118(3), 1319–1330. https://doi.org/10.1002/jgra.50169

Wu, Q., Wang, W., Roble, R. G., Häggström, I., & Strømme, A. (2012). First daytime thermospheric wind observation from a balloon-borne Fabry-Perot interferometer over Kiruna (68N). Geophysical Research Letters, 39, L14104. https://doi.org/10.1029/2012gl052533

Zossi, B. S., Fagre, M., & Elias, A. G. (2019). Pedersen ionic contribution in different time scales. Journal of Geophysical Research: Space Physics, 124(8), 6961–6970. https://doi.org/10.1029/2019ja026884

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る