リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Curcumin β-D-Glucuronide Modulates an Autoimmune Model of Multiple Sclerosis with Altered Gut Microbiota in the Ileum and Feces」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Curcumin β-D-Glucuronide Modulates an Autoimmune Model of Multiple Sclerosis with Altered Gut Microbiota in the Ileum and Feces

Khadka, Sundar Omura, Seiichi Sato, Fumitaka Nishio, Kazuto Kakeya, Hideaki Tsunoda, Ikuo 京都大学 DOI:10.3389/fcimb.2021.772962

2021

概要

We developed a prodrug type of curcumin, curcumin monoglucuronide (CMG), whose intravenous/intraperitoneal injection achieves a high serum concentration of free-form curcumin. Although curcumin has been reported to alter the gut microbiota and immune responses, it is unclear whether the altered microbiota could be associated with inflammation in immune-mediated diseases, such as multiple sclerosis (MS). We aimed to determine whether CMG administration could affect the gut microbiota at three anatomical sites (feces, ileal contents, and the ileal mucosa), leading to suppression of inflammation in the central nervous system (CNS) in an autoimmune model for MS, experimental autoimmune encephalomyelitis (EAE). We injected EAE mice with CMG, harvested the brains and spinal cords for histological analyses, and conducted microbiome analyses using 16S rRNA sequencing. CMG administration modulated EAE clinically and histologically, and altered overall microbiota compositions in feces and ileal contents, but not the ileal mucosa. Principal component analysis (PCA) of the microbiome showed that principal component (PC) 1 values in ileal contents, but not in feces, correlated with the clinical and histological EAE scores. On the other hand, when we analyzed the individual bacteria of the microbiota, the EAE scores correlated with significant increases in the relative abundance of two bacterial species at each anatomical site: Ruminococcus bromii and Blautia (Ruminococcus) gnavus in feces, Turicibacter sp. and Alistipes finegoldii in ileal contents, and Burkholderia spp. and Azoarcus spp. in the ileal mucosa. Therefore, CMG administration could alter the gut microbiota at the three different sites differentially in not only the overall gut microbiome compositions but also the abundance of individual bacteria, each of which was associated with modulation of neuroinflammation.

この論文で使われている画像

参考文献

Autoimmune Encephalomyelitis. J. Exp. Med. 189, 1005–1010. doi: 10.1084/

jem.189.6.1005

Deng, F., Li, Y., and Zhao, J. (2019). The Gut Microbiome of Healthy Long-Living

People. Aging (Albany N.Y.) 11, 289–290. doi: 10.18632/aging.101771

De Velasco, M. A., Lu, Y., Kura, Y., China, T., Inoue, Y., Nakayama, A., et al.

(2020). Chemopreventive Effects of Nanoparticle Curcumin in a Mouse Model

of Pten-Deficient Prostate Cancer. Hum. Cell 33, 730–736. doi: 10.1007/

s13577-020-00337-7

Dieterich, W., Schink, M., and Zopf, Y. (2018). Microbiota in the Gastrointestinal

Tract. Med. Sci. (Basel) 6, 116. doi: 10.3390/medsci6040116

Di Meo, F., Margarucci, S., Galderisi, U., Crispi, S., and Peluso, G. (2019).

Curcumin, Gut Microbiota, and Neuroprotection. Nutrients 11, 2426.

doi: 10.3390/nu11102426

Durbá n, A., Abellá n, J. J., Jimé nez-Herná ndez, N., Ponce, M., Ponce, J., Sala, T.,

et al. (2011). Assessing Gut Microbial Diversity From Feces and Rectal Mucosa.

Microb. Ecol. 61, 123–133. doi: 10.1007/s00248-010-9738-y

Durbá n, A., Abellá n, J. J., Jimé nez-Herná ndez, N., Salgado, P., Ponce, M., Ponce, J.,

et al. (2012). Structural Alterations of Faecal and Mucosa-Associated Bacterial

Communities in Irritable Bowel Syndrome. Environ. Microbiol. Rep. 4, 242–

247. doi: 10.1111/j.1758-2229.2012.00327.x

Dziarski, R., Park, S. Y., Kashyap, D. R., Dowd, S. E., and Gupta, D. (2016). PglyrpRegulated Gut Microflora Prevotella Falsenii, Parabacteroides Distasonis and

Bacteroides Eggerthii Enhance and Alistipes Finegoldii Attenuates Colitis in

Mice. PloS One 11, e0146162. doi: 10.1371/journal.pone.0146162

Farkas, A. M., Panea, C., Goto, Y., Nakato, G., Galan-Diez, M., Narushima, S., et al.

(2015). Induction of Th17 Cells by Segmented Filamentous Bacteria in the Murine

Intestine. J. Immunol. Methods 421, 104–111. doi: 10.1016/j.jim.2015.03.020

Fernando, V., Omura, S., Sato, F., Kawai, E., Martinez, N. E., Elliott, S. F., et al.

(2014). Regulation of an Autoimmune Model for Multiple Sclerosis in Th2Biased GATA3 Transgenic Mice. Int. J. Mol. Sci. 15, 1700–1718. doi: 10.3390/

ijms15021700

Gandy, K. A. O., Zhang, J., Nagarkatti, P., and Nagarkatti, M. (2019). The Role of

Gut Microbiota in Shaping the Relapse-Remitting and Chronic-Progressive

Forms of Multiple Sclerosis in Mouse Models. Sci. Rep. 9, 6923. doi: 10.1038/

s41598-019-43356-7

Gong, D., Gong, X., Wang, L., Yu, X., and Dong, Q. (2016). Involvement of

Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterol.

Res. Pract. 2016, 6951091. doi: 10.1155/2016/6951091

Hansen, S. G. K., Skov, M. N., and Justesen, U. S. (2013). Two Cases of

Ruminococcus Gnavus Bacteremia Associated With Diverticulitis. J. Clin.

Microbiol. 51, 1334–1336. doi: 10.1128/JCM.03382-12

Ivanov, I. I., Frutos R de, L., Manel, N., Yoshinaga, K., Rifkin, D. B., Sartor, R. B.,

et al. (2008). Specific Microbiota Direct the Differentiation of IL-17-Producing

T-Helper Cells in the Mucosa of the Small Intestine. Cell Host Microbe 4, 337–

349. doi: 10.1016/j.chom.2008.09.009

Jangi, S., Gandhi, R., Cox, L. M., Li, N., von Glehn, F., Yan, R., et al. (2016).

Alterations of the Human Gut Microbiome in Multiple Sclerosis. Nat.

Commun. 7, 12015. doi: 10.1038/ncomms12015

Kanakasabai, S., Casalini, E., Walline, C. C., Mo, C., Chearwae, W., and Bright, J. J.

(2012). Differential Regulation of CD4(+) T Helper Cell Responses by

Curcumin in Experimental Autoimmune Encephalomyelitis. J. Nutr.

Biochem. 23, 1498–1507. doi: 10.1016/j.jnutbio.2011.10.002

Kawabata, K., Baba, N., Sakano, T., Hamano, Y., Taira, S., Tamura, S., et al. (2018).

Functional Properties of Anti-Inflammatory Substances From Quercetin-

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fcimb.2021.

772962/full#supplementary-material

Anand, P., Kunnumakkara, A. B., Newman, R. A., and Aggarwal, B. B. (2007).

Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 4, 807–818.

doi: 10.1021/mp700113r

Asai, A., and Miyazawa, T. (2000). Occurrence of Orally Administered

Curcuminoid as Glucuronide and Glucuronide/Sulfate Conjugates in Rat

Plasma. Life Sci. 67, 2785–2793. doi: 10.1016/s0024-3205(00)00868-7

Azzouz, D., Omarbekova, A., Heguy, A., Schwudke, D., Gisch, N., Rovin, B. H.,

et al. (2019). Lupus Nephritis Is Linked to Disease-Activity Associated

Expansions and Immunity to a Gut Commensal. Ann. Rheum. Dis. 78, 947–

956. doi: 10.1136/annrheumdis-2018-214856

Bettelli, E., Das, M. P., Howard, E. D., Weiner, H. L., Sobel, R. A., and Kuchroo, V.

K. (1998). IL-10 Is Critical in the Regulation of Autoimmune

Encephalomyelitis as Demonstrated by Studies of IL-10- and IL-4-Deficient

and Transgenic Mice. J. Immunol. 161, 3299–3306.

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith,

G. A., et al. (2019). Reproducible, Interactive, Scalable and Extensible

Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 37, 852–857.

doi: 10.1038/s41587-019-0209-9

Bosshard, P. P., Zbinden, R., and Altwegg, M. (2002). Turicibacter Sanguinis Gen.

Nov., Sp. Nov., A Novel Anaerobic, Gram-Positive Bacterium. Int. J. Syst. Evol.

Microbiol. 52, 1263–1266. doi: 10.1099/00207713-52-4-1263

Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tó th, M., et al.

(2014). The Gut Microbiota Influences Blood-Brain Barrier Permeability in

Mice. Sci. Transl. Med. 6, 263ra158. doi: 10.1126/scitranslmed.3009759

Breban, M., Tap, J., Leboime, A., Said-Nahal, R., Langella, P., Chiocchia, G., et al.

(2017). Faecal Microbiota Study Reveals Specific Dysbiosis in Spondyloarthritis.

Ann. Rheum. Dis. 76, 1614–1622. doi: 10.1136/annrheumdis-2016-211064

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A.,

Turnbaugh, P. J., et al. (2011). Global Patterns of 16S rRNA Diversity at a

Depth of Millions of Sequences Per Sample. Proc. Natl. Acad. Sci. U.S.A. 108

(Suppl 1), 4516–4522. doi: 10.1073/pnas.1000080107

Chaitanya, G. V., Omura, S., Sato, F., Martinez, N. E., Minagar, A., Ramanathan,

M., et al. (2013). Inflammation Induces Neuro-Lymphatic Protein Expression

in Multiple Sclerosis Brain Neurovasculature. J. Neuroinflamm. 10, 125.

doi: 10.1186/1742-2094-10-125

Chaudhry, A., Samstein, R. M., Treuting, P., Liang, Y., Pils, M. C., Heinrich, J.-M.,

et al. (2011). Interleukin-10 Signaling in Regulatory T Cells Is Required for

Suppression of Th17 Cell-Mediated Inflammation. Immunity 34, 566–578.

doi: 10.1016/j.immuni.2011.03.018

Chearwae, W., and Bright, J. J. (2008). 15-Deoxy-Delta(12,14)-Prostaglandin J(2)

and Curcumin Modulate the Expression of Toll-Like Receptors 4 and 9 in

Autoimmune T Lymphocyte. J. Clin. Immunol. 28, 558–570. doi: 10.1007/

s10875-008-9202-7

Chen, J., Chia, N., Kalari, K. R., Yao, J. Z., Novotna, M., Paz Soldan, M. M., et al.

(2016). Multiple Sclerosis Patients Have a Distinct Gut Microbiota Compared

to Healthy Controls. Sci. Rep. 6, 28484. doi: 10.1038/srep28484

Cosorich, I., Dalla-Costa, G., Sorini, C., Ferrarese, R., Messina, M. J., Dolpady, J.,

et al. (2017). High Frequency of Intestinal TH17 Cells Correlates With

Microbiota Alterations and Disease Activity in Multiple Sclerosis. Sci. Adv.

3, e1700492. doi: 10.1126/sciadv.1700492

Cua, D. J., Groux, H., Hinton, D. R., Stohlman, S. A., and Coffman, R. L.

(1999). Transgenic Interleukin 10 Prevents Induction of Experimental

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org

16

December 2021 | Volume 11 | Article 772962

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Khadka et al.

CMG Modulates MS Autoimmune Model

National Research Council (US) Committee for the Update of the Guide for the

Care and Use of Laboratory Animals (2011) Guide for the Care and Use of

Laboratory Animals (Washington (DC: National Academies Press (US).

Available at: http://www.ncbi.nlm.nih.gov/books/NBK54050/ (Accessed

December 1, 2020).

Omura, S., Sato, F., Martinez, N. E., Park, A.-M., Fujita, M., Kennett, N. J., et al.

(2019). Bioinformatics Analyses Determined the Distinct CNS and Peripheral

Surrogate Biomarker Candidates Between Two Mouse Models for Progressive

Multiple Sclerosis. Front. Immunol. 10, 516. doi: 10.3389/fimmu.2019.00516

Omura, S., Sato, F., Park, A.-M., Fujita, M., Khadka, S., Nakamura, Y., et al. (2020).

Bioinformatics Analysis of Gut Microbiota and CNS Transcriptome in VirusInduced Acute Myelitis and Chronic Inflammatory Demyelination; Potential

Association of Distinct Bacteria With CNS IgA Upregulation. Front. Immunol.

11, 1138. doi: 10.3389/fimmu.2020.01138

Ozawa, H., Imaizumi, A., Sumi, Y., Hashimoto, T., Kanai, M., Makino, Y., et al.

(2017). Curcumin b-D-Glucuronide Plays an Important Role to Keep High

Levels of Free-Form Curcumin in the Blood. Biol. Pharm. Bull. 40, 1515–1524.

doi: 10.1248/bpb.b17-00339

Ozawa-Umeta, H., Kishimoto, A., Imaizumi, A., Hashimoto, T., Asakura, T.,

Kakeya, H., et al. (2020). Curcumin b-D-Glucuronide Exhibits Anti–Tumor

Effects on Oxaliplatin-Resistant Colon Cancer With Less Toxicity In Vivo.

Cancer Sci. 111, 1785–1793. doi: 10.1111/cas.14383

Pan, M. H., Huang, T. M., and Lin, J. K. (1999). Biotransformation of Curcumin

Through Reduction and Glucuronidation in Mice. Drug Metab. Dispos. 27,

486–494.

Parker, B. J., Wearsch, P. A., Veloo, A. C. M., and Rodriguez-Palacios, A. (2020).

The Genus Alistipes: Gut Bacteria With Emerging Implications to

Inflammation, Cancer, and Mental Health. Front. Immunol. 11, 906.

doi: 10.3389/fimmu.2020.00906

Park, A.-M., Omura, S., Fujita, M., Sato, F., and Tsunoda, I. (2017). Helicobacter

Pylori and Gut Microbiota in Multiple Sclerosis versus Alzheimer’s Disease: 10

Pitfalls of Microbiome Studies. Clin. Exp. Neuroimmunol. 8, 215–232.

doi: 10.1111/cen3.12401

Park, J., Wang, Q., Wu, Q., Mao-Draayer, Y., and Kim, C. H. (2019). Bidirectional

Regulatory Potentials of Short-Chain Fatty Acids and Their G-ProteinCoupled Receptors in Autoimmune Neuroinflammation. Sci. Rep. 9, 8837.

doi: 10.1038/s41598-019-45311-y

Peterson, C. T., Vaughn, A. R., Sharma, V., Chopra, D., Mills, P. J., Peterson, S. N.,

et al. (2018). Effects of Turmeric and Curcumin Dietary Supplementation

on Human Gut Microbiota: A Double-Blind, Randomized, PlaceboControlled Pilot Study. J. Evid. Based Integr. Med. 23, 1–8. doi: 10.1177/

2515690X18790725

Sato, F., Kawai, E., Martinez, N. E., Omura, S., Park, A.-M., Takahashi, S., et al.

(2017). T-bet, But Not Gata3, Overexpression Is Detrimental in a Neurotropic

Viral Infection. Sci. Rep. 7, 10496. doi: 10.1038/s41598-017-10980-0

Sato, F., Omura, S., Martinez, N. E., and Tsunoda, I. (2018). “Chapter 3: Animal

Models of Multiple Sclerosis,” in Neuroinflammation. Ed. A. Minagar

(Burlington, MA: Elsevier), 37–72.

Shen, L., Liu, L., and Ji, H.-F. (2017). Regulative Effects of Curcumin Spice

Administration on Gut Microbiota and Its Pharmacological Implications. Food

Nutr. Res. 61, 1361780. doi: 10.1080/16546628.2017.1361780

Takewaki, D., and Yamamura, T. (2021). Gut Microbiome Research in Multiple

Sclerosis. Neurosci. Res. 168, 28–31. doi: 10.1016/j.neures.2021.05.001

Tong, M., Jacobs, J. P., McHardy, I. H., and Braun, J. (2014). Sampling of Intestinal

Microbiota and Targeted Amplification of Bacterial 16S rRNA Genes for

Microbial Ecologic Analysis. Curr. Protoc. Immunol. 107, 7.41.1–7.41.11.

doi: 10.1002/0471142735.im0741s107

Tsunoda, I. (2017). Lymphatic System and Gut Microbiota Affect

Immunopathology of Neuroinflammatory Diseases, Including Multiple

Sclerosis, Neuromyelitis Optica and Alzheimer’s Disease. Clin. Exp.

Neuroimmunol. 8, 177–179. doi: 10.1111/cen3.12405

Tsunoda, I., Kobayashi-Warren, M., Libbey, J. E., and Fujinami, R. S. (2009).

“Central Nervous System Degeneration Caused by Autoimmune Cytotoxic

CD8+ T Cell Clones and Hybridomas,” in Encyclopedia of Neuroscience. Eds.

M. D. Binder, N. Hirokawa and U. Windhorst (Berlin, Heidelberg: Springer),

619–625. doi: 10.1007/978-3-540-29678-2_894

Tsunoda, I., Kuang, L.-Q., Tolley, N. D., Whitton, J. L., and Fujinami, R. S. (1998).

Enhancement of Experimental Allergic Encephalomyelitis (EAE) by DNA

Treated Bifidobacterium Adolescentis. Biosci. Biotechnol. Biochem. 82, 689–

697. doi: 10.1080/09168451.2017.1401916

Kozik, A. J., Nakatsu, C. H., Chun, H., and Jones-Hall, Y. L. (2019). Comparison of

the Fecal, Cecal, and Mucus Microbiome in Male and Female Mice After

TNBS-Induced Colitis. PloS One 14, e0225079. doi: 10.1371/journal.

pone.0225079

Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J.

A., et al. (2013). Predictive Functional Profiling of Microbial Communities

Using 16S rRNA Marker Gene Sequences. Nat. Biotechnol. 31, 814–821.

doi: 10.1038/nbt.2676

Lazar, V., Ditu, L.-M., Pircalabioru, G. G., Gheorghe, I., Curutiu, C., Holban, A.

M., et al. (2018). Aspects of Gut Microbiota and Immune System Interactions

in Infectious Diseases, Immunopathology, and Cancer. Front. Immunol. 9,

1830. doi: 10.3389/fimmu.2018.01830

Lee, S. M., Kim, N., Park, J. H., Nam, R. H., Yoon, K., and Lee, D. H. (2018).

Comparative Analysis of Ileal and Cecal Microbiota in Aged Rats. J. Cancer

Prev. 23, 70–76. doi: 10.15430/JCP.2018.23.2.70

Lin, X., Bai, D., Wei, Z., Zhang, Y., Huang, Y., Deng, H., et al. (2019). Curcumin

Attenuates Oxidative Stress in RAW264.7 Cells by Increasing the Activity of

Antioxidant Enzymes and Activating the Nrf2-Keap1 Pathway. PloS One 14,

e0216711. doi: 10.1371/journal.pone.0216711

Li, G., Yang, M., Zhou, K., Zhang, L., Tian, L., Lv, S., et al. (2015). Diversity of

Duodenal and Rectal Microbiota in Biopsy Tissues and Luminal Contents in

Healthy Volunteers. J. Microbiol. Biotechnol. 25, 1136–1145. doi: 10.4014/

jmb.1412.12047

Long, C.-X., He, L., Guo, Y.-F., Liu, Y.-W., Xiao, N.-Q., and Tan, Z.-J. (2017).

Diversity of Bacterial Lactase Genes in Intestinal Contents of Mice With

Antibiotics-Induced Diarrhea. World J. Gastroenterol. 23, 7584–7593.

doi: 10.3748/wjg.v23.i42.7584

Manichanh, C., Rigottier-Gois, L., Bonnaud, E., Gloux, K., Pelletier, E., Frangeul,

L., et al. (2006). Reduced Diversity of Faecal Microbiota in Crohn’s Disease

Revealed by a Metagenomic Approach. Gut 55, 205–211. doi: 10.1136/

gut.2005.073817

Martinez, N. E., Karlsson, F., Sato, F., Kawai, E., Omura, S., Minagar, A., et al.

(2014). Protective and Detrimental Roles for Regulatory T Cells in a Viral

Model for Multiple Sclerosis. Brain Pathol. 24, 436–451. doi: 10.1111/

bpa.12119

Martinez, N. E., Sato, F., Omura, S., Kawai, E., Takahashi, S., Yoh, K., et al. (2014).

RORgt, But Not T-bet, Overexpression Exacerbates an Autoimmune Model for

Multiple Sclerosis. J. Neuroimmunol. 276, 142–149. doi: 10.1016/

j.jneuroim.2014.09.006

Ma, D., Wang, A. C., Parikh, I., Green, S. J., Hoffman, J. D., Chlipala, G., et al.

(2018). Ketogenic Diet Enhances Neurovascular Function With Altered Gut

Microbiome in Young Healthy Mice. Sci. Rep. 8, 6670. doi: 10.1038/s41598018-25190-5

McRae, B. L., Vanderlugt, C. L., Dal Canto, M. C., and Miller, S. D. (1995).

Functional Evidence for Epitope Spreading in the Relapsing Pathology of

Experimental Autoimmune Encephalomyelitis. J. Exp. Med. 182, 75–85.

doi: 10.1084/jem.182.1.75

Miyake, S., Kim, S., Suda, W., Oshima, K., Nakamura, M., Matsuoka, T., et al.

(2015). Dysbiosis in the Gut Microbiota of Patients With Multiple Sclerosis,

With a Striking Depletion of Species Belonging to Clostridia XIVa and IV

Clusters. PloS One 10, e0137429. doi: 10.1371/journal.pone.0137429

Miyauchi, E., Kim, S.-W., Suda, W., Kawasumi, M., Onawa, S., Taguchi-Atarashi,

N., et al. (2020). Gut Microorganisms Act Together to Exacerbate

Inflammation in Spinal Cords. Nature 585, 102–106. doi: 10.1038/s41586020-2634-9

Mohajeri, M., Sadeghizadeh, M., Najafi, F., and Javan, M. (2015). Polymerized

Nano-Curcumin Attenuates Neurological Symptoms in EAE Model of

Multiple Sclerosis Through Down Regulation of Inflammatory and Oxidative

Processes and Enhancing Neuroprotection and Myelin Repair.

Neuropharmacology 99, 156–167. doi: 10.1016/j.neuropharm.2015.07.013

Mukaka, M. M. (2012). Statistics Corner: A Guide to Appropriate Use of

Correlation Coefficient in Medical Research. Malawi Med. J. 24, 69–71.

Natarajan, C., and Bright, J. J. (2002). Curcumin Inhibits Experimental Allergic

Encephalomyelitis by Blocking IL-12 Signaling Through Janus Kinase-STAT

Pathway in T Lymphocytes. J. Immunol. 168, 6506–6513. doi: 10.4049/

jimmunol.168.12.6506

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org

17

December 2021 | Volume 11 | Article 772962

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Khadka et al.

CMG Modulates MS Autoimmune Model

Gut Microbiota and Short-Chain Fatty Acids. Phytomedicine 77, 153268.

doi: 10.1016/j.phymed.2020.153268

Zam, W. (2018). Gut Microbiota as a Prospective Therapeutic Target for

Curcumin: A Review of Mutual Influence. J. Nutr. Metab. 2018, 1367984.

doi: 10.1155/2018/1367984

Zhang, Z., Chen, Y., Xiang, L., Wang, Z., Xiao, G. G., and Hu, J. (2017). Effect of

Curcumin on the Diversity of Gut Microbiota in Ovariectomized Rats.

Nutrients 9, 1146. doi: 10.3390/nu9101146

Immunization With Myelin Proteolipid Protein (PLP) Plasmid DNA.

J. Neuropathol. Exp. Neurol. 57, 758–767. doi: 10.1097/00005072-19980800000005

Tsunoda, I., Libbey, J. E., Kuang, L.-Q., Terry, E. J., and Fujinami, R. S. (2005).

Massive Apoptosis in Lymphoid Organs in Animal Models for Primary and

Secondary Progressive Multiple Sclerosis. Am. J. Pathol. 167, 1631–1646.

doi: 10.1016/S0002-9440(10)61247-3

Tsunoda, I., Tanaka, T., Terry, E. J., and Fujinami, R. S. (2007). Contrasting Roles

for Axonal Degeneration in an Autoimmune Versus Viral Model of Multiple

Sclerosis: When can Axonal Injury be Beneficial? Am. J. Pathol. 170, 214–226.

doi: 10.2353/ajpath.2007.060683

Urban, T. A., Griffith, A., Torok, A. M., Smolkin, M. E., Burns, J. L., and Goldberg,

J. B. (2004). Contribution of Burkholderia Cenocepacia Flagella to Infectivity

and Inflammation. Infect. Immun. 72, 5126–5134. doi: 10.1128/IAI.72.9.51265134.2004

Verbeek, R., van Tol, E. A. F., and van Noort, J. M. (2005). Oral Flavonoids Delay

Recovery From Experimental Autoimmune Encephalomyelitis in SJL Mice.

Biochem. Pharmacol. 70, 220–228. doi: 10.1016/j.bcp.2005.04.041

Wiersinga, W. J., de Vos, A. F., de Beer, R., Wieland, C. W., Roelofs, J. J. T. H.,

Woods, D. E., et al. (2008). Inflammation Patterns Induced by Different

Burkholderia Species in Mice. Cell Microbiol. 10, 81–87. doi: 10.1111/j.14625822.2007.01016.x

Wu, M., Li, P., Li, J., An, Y., Wang, M., and Zhong, G. (2020). The Differences

Between Luminal Microbiota and Mucosal Microbiota in Mice. J. Microbiol.

Biotechnol. 30, 287–295. doi: 10.4014/jmb.1908.08037

Xie, L., Li, X.-K., Funeshima-Fuji, N., Kimura, H., Matsumoto, Y., Isaka, Y., et al.

(2009). Amelioration of Experimental Autoimmune Encephalomyelitis by

Curcumin Treatment Through Inhibition of IL-17 Production. Int.

Immunopharmacol. 9, 575–581. doi: 10.1016/j.intimp.2009.01.025

Yao, Y., Yan, L., Chen, H., Wu, N., Wang, W., and Wang, D. (2020). Cyclocarya

Paliurus Polysaccharides Alleviate Type 2 Diabetic Symptoms by Modulating

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org

Conflict of Interest: HK owns equity and is a scientific consultant for

Therabiopharma.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

This study received funding from Novartis Pharma. The funder was not involved

in the study design, collection, analysis, interpretation of data, the writing of this

article or the decision to submit it for publication.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Khadka, Omura, Sato, Nishio, Kakeya and Tsunoda. This is an openaccess article distributed under the terms of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice. No

use, distribution or reproduction is permitted which does not comply with these terms.

18

December 2021 | Volume 11 | Article 772962

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る