リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Analysis of Stereochemical Stability of Dynamic Chiral Molecules using an Automated Microflow Measurement System」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Analysis of Stereochemical Stability of Dynamic Chiral Molecules using an Automated Microflow Measurement System

Igawa, Kazunobu 井川, 和宣 イガワ, カズノブ Asano, Shusaku 浅野, 周作 アサノ, シュウサク Yoshida, Yuki ヨシダ, ユキ Kawasaki, Yuuya 河崎, 悠也 カワサキ, ユウヤ Tomooka, Katsuhiko 友岡, 克彦 トモオカ, カツヒコ 九州大学

2021.07.16

概要

An automated microflow measurement system for the kinetic study of racemization of dynamic chiral molecules was developed. This system facilitated the analysis of fast racemization within several seco

参考文献

(1) (a) Kagan, H. La Stéréochimie Organique; Presses Universitaires de France: Paris, 1975. (b) Asymmetric Synthesis, Vol 1-5;

Morrison, J. D., Ed.; Academic Press: New York, 1983-1985. (c) Eliel,

E. L.; Wilen, S. H. Stereochemistry of Organic Compounds; Wiley:

New York, 1994. (d) Comprehensive Chirality, Vol. 1-9; Carreira, E.

M.; Yamamoto, H., Eds.; Elsevier: Amsterdam, 2012.

(2) For representative reviews on DYCMs, see: (a) Ō ki, M. The

Chemistry of Rotational Isomers; Springer: New York, 1993. (b)

Wolf, C. Dynamic Stereochemistry of Chiral Compounds: Principles

and Applications; RSC Publishing: Cambridge, 2008. (c) Mancinelli,

M.; Bencivenni, G.; Pecorari, D.; Mazzanti, A., Stereochemistry and

Recent Applications of Axially Chiral Organic Molecules. Eur. J. Org.

Chem. 2020, 4070-4086.

(3) For representative examples of synthetic applications of

DYCMs, see: (a) Bringmann, G.: Jansen, J. R.; Rink, H.-P., Regioselective and Atropoisomeric-selective Aryl Coupling to give Naphthyl

Isoquinoline Alkaloids: The First Total Synthesis of (–)-Ancistrocladine. Angew. Chem. Int. Ed. 1986, 25, 913-915. (b) Kawabata, T.;

Yahiro, K.; Fuji, K., Memory of Chirality: Enantioselective Alkylation

Reactions at an Asymmetric Carbon Adjacent to a Carbonyl Group.

J. Am. Chem. Soc. 1991, 113, 9694-9696. (c) Oi, S.; Kawagoe, K.; Miyano, S., Acid-catalyzed Facile Racemization of Axially Dissymmetric 2'-Hydroxy-1,1'-binaphthyl-2-carboxylic Acid. Chem. Lett. 1993,

22, 79-80. (d) Bringmann, G.; Schöner, B.; Schupp, O.; Peters, K.; Peters, E. M.; Vonschnering, H. G., Synthesis, Optical Resolution, and

Helimerization of Dinaphtho[2,1-b:1',2'-d]-pyran-4-one. Liebigs

Anna. Chem. 1994, 9191-9197. (e) Tomooka, K.; Komine, N.; Fujiki,

D.; Nakai, T.; Yanagitsuru, S., Planar Chiral Cyclic Ether: Asymmetric Resolution and Chirality Transformation. J. Am. Chem. Soc. 2005,

127, 12182-12183. (f) Tomooka, K.; Suzuki, M.; Shimada, M.; Yanagitsuru, S.; Uehara, K., Planar Chiral Cyclic Amine and Its Derivatives: Synthesis and Stereochemical Behavior. Org. Lett. 2006, 8,

963-965. (g) Clayden, J.; Vallverdú, L.; Helliwell, M., Conformational

Communication between the Ar-CO and Ar-N Axes in 2,2 '-Disubstituted Benzanilides and Their Derivatives. Org. Biomol. Chem.

2006, 4, 2106-2118. (h) Tomooka, K.; Suzuki, M.; Uehara, K.; Shimada, M.; Akiyama, T., Novel Synthetic Approach to Nine-Membered Diallylic Amides: Stereochemical Behavior and Utility as Chiral Building Block. Synlett 2008, 2518-2522. (i) Tomooka, K.; Akiyama, T.; Man, P.; Suzuki, M., Asymmetric Synthesis of (–)- and (+)Kainic Acid using a Planar Chiral Amide as a Chiral Building Block.

Tetrahedron Lett. 2008, 49, 6327-6329; and references 11 and 12.

(4) Biological studies on DYCMs, see: (a) Takahashi, H.; Wakamatsu, S.; Tabata, H.; Oshitari, T.; Harada, A.; Inoue, K.; Natsugari,

H., Atropisomerism Observed in Indometacin Derivatives. Org. Lett.

2011, 13, 760-763. (b) Tabata, H.; Wada, N.; Takada, Y.; Nakagomi,

J.; Miike, T.; Shirahase, H.; Oshitari, T.; Takahashi, H.; Natsugari, H.,

Active Conformation of Seven-membered-ring Benzolactams as

New ACAT Inhibitors: Latent Chirality at N5 in the 1,5-Benzodiazepin-2-one Nucleus. Chem. Eur. J. 2012, 18, 1572-1576. (c) Selness,

S. R.; Devraj, R. V.; Devadas, B.; Walker, J. K.; Boehm, T. L.; Durley, R.

C.; Shieh, H.; Xing, L.; Rucker, P. V.; Jerome, K. D.; Benson, A. G.; Marrufo, L. D.; Madsen, H. M.; Hitchcock, J.; Owen, T. J.; Christie, L.;

Promo, M. A.; Hickory, B. S.; Alvira, E.; Naing, W.; Blevis-Bal, R.;

Messing, D.; Yang, J.; Mao, M. K.; Yalamanchili, G.; Embse, R. V.;

Hirsch, J.; Saabye, M.; Bonar, S.; Webb, E.; Anderson, G.; Monahan, J.

B., Discovery of PH-797804, a Highly Selective and Potent Inhibitor

of p38 MAP Kinase. Bioorg. Med. Chem. Lett. 2011, 21, 4066-4071.

(d) Wakamatsu, S.; Takahashi, Y.; Tabata, H.; Oshitari, T.; Tani, N.;

Azumaya, I.; Katsumoto, Y.; Tanaka, T.; Hosoi, S.; Natsugari, H.;

Takahashi, H., Conformation and Atropisomeric Properties of Indometacin Derivatives. Chem. Eur. J. 2013, 19, 7056-7063. (e)

Sugane, T.; Tobe, T.; Hamaguchi, W.; Shimada, I.; Maeno, K.; Miyata,

J.; Suzuki, T.; Kimizuka, T.; Sakamoto, S.; Tsukamoto, S.-I., Atropisomeric 4-Phenyl-4H-1,2,4-triazoles as Selective Glycine Transporter

1 Inhibitors. J. Med. Chem. 2013, 56, 5744-5756. For representative

reviews on biological studies on DYCMs, see (f) Clayden, J.; Moran,

W. J.; Edwards, P. J.; LaPlante, S. R., The Challenge of Atropisomerism in Drug Discovery. Angew. Chem. Int. Ed. 2009, 48, 6398-6401.

(g) Glunz, P. W., Recent Encounters with Atropisomerism in Drug

Discovery. Bioorg. Med. Chem. Lett. 2018, 28, 53-60.

(5) Recently, we have developed dynamic asymmetric induction

(DYASIN) of DYCMs, which provides optically active DYCMs by interaction with outer chiral source, see: Igawa, K.; Kawasaki, Y.; Ano,

Y.; Kashiwagi, T.; Ogawa, K.; Hayashi, J.; Morita, R.; Yoshioka, Y.;

Uehara, K.; Tomooka, K., Preparation of Enantioenriched Chiral Organic Molecules by Dynamic Asymmetric Induction from a Outer

Chiral Source. Chem. Lett. 2019, 48, 726-729.

(6) For representative reviews on microflow reactors, see: (a)

Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I., Adventures in Inner

Space: Microflow Systems for Practical Organic Synthesis. Synlett

2008, 151-163. (b) Yoshida, J.-I.; Takahashi, Y.; Nagaki, A., Flash

Chemistry: Flow Chemistry That cannot be done in Batch. Chem.

Commun. 2013, 49, 9896-9904. (c) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H., The Hitchhiker's Guide to Flow Chemistry(II). Chem. Rev. 2017, 117, 11796-11893. (d) Bloemendal, V.;

Janssen, M.; van Hest, J. C. M.; Rutjes, F., Continuous One-flow Multistep Synthesis of Active Pharmaceutical Ingredients. React. Chem.

Eng. 2020, 5, 1186-1197.

(7) For a review on dynamic NMR spectroscopy and dynamic

HPLC analysis, see: Rickhaus, M.; Jundt, L.; Mayor M., Determining

Inversion Barriers in Atropisomers – A Tutorial for Organic Chemists. CHIMIA 2016, 70, 192-202.

(8) For a review on chiral HPLC analysis, see: Okamoto, Y.; Ikai,

T., Chiral HPLC for Efficient Resolution of Enantiomers. Chem. Soc.

Rev. 2008, 37, 2593-2608.

(9) The values of half-live of optical activity were calculated by

Eyring equation on the assumption that transmission coefficient is

one.

(10) Uncertainty of activation parameters owing to the narrow

thermal range of measurement was well discussed, see: Espenson,

J. H. Chemical Kinetics and Reaction Mechanisms, 2nd ed; McGrawHill, Inc.: New York, 1995.

(11) (a) Tomooka, K.; Iso, C.; Uehara, K.; Suzuki, M.; NishikawaShimono, R.; Igawa, K., Planar-chiral [7]Orthocyclophanes. Angew.

Chem. Int. Ed. 2012, 51, 10355-10358. (b) Igawa, K.; Machida, K.;

Noguchi, K.; Uehara, K.; Tomooka, K., Synthesis and Stereochemical

Analysis of Planar-chiral (E)-4-[7]Orthocyclophene. J. Org. Chem.

2016, 81, 11587-11593.

(12) For representative studies on axial-chiral N-arylamides,

see: (a) Curran, D. P.; Qi, H. Y.; Geib, S. J.; Demello, N. C., Atroposelective Thermal-Reactions of Axially Twisted Amides and Imides. J.

Am. Chem. Soc. 1994, 116, 3131-3132. (b) Hughes, A. D.; Price, D.

A.; Shishkin, O.; Simpkins, N. S., Diastereoselective Enolate Chemistry using Atropisomeric Amides. Tetrahedron Lett. 1996, 37, 76077610. (c) Kitagawa, O.; Izawa, H.; Taguchi, T.; Shiro, M., An Efficient

Synthesis of Optically Active Axially Chiral Anilide and Its Application to Iodine-mediated Asymmetric Diels-Alder Reaction. Tetrahedron Lett. 1997, 38. 4447-4450. (d) Curran, D. P.; Liu, W. D.; Chen,

C. H. T., Transfer of Chirality in Radical Cyclizations. Cyclization of

o-Haloacrylanilides to Oxindoles with Transfer of Axial Chirality to

a Newly Formed Stereocenter. J. Am. Chem. Soc. 1999, 121, 1101211013. (e) Clayden, J.; McCarthy, C.; Helliwell, M., Bonded Peri-interactions Govern the Rate of Racemisation of Atropisomeric 8Substituted 1-Naphthamides. Chem. Commun. 1999, 2059-2060.

(f) Adler, T.; Bonjoch, J.; Clayden, J. Font-Bardía, M.; Pickworth, M.;

Solans, X.; Solé, D.; Vallverdú, L., Slow Interconversion of Enantiomeric Conformers or Atropisomers of Anilide and Urea Derivatives

of 2-Substituted Anilines. Org. Biomol. Chem. 2005, 3, 3173-3183.

(g) Guthrie, D. B.; Curran, D. P., Asymmetric Radical and Anionic Cyclizations of Axially Chiral Carbamates. Org. Lett. 2009, 11, 249251. (h) Shirakawa, S.; Liu, K.; Maruoka, K., Catalytic Asymmetric

Synthesis of Axially Chiral o-lodoanilides by Phase-transfer Catalyzed Alkylations. J. Am. Chem. Soc. 2012, 134, 916-919. (i) Nakazaki, A.; Miyagawa, K.; Miyata, N.; Nishikawa, T., Synthesis of a C-N

Axially Chiral N-Arylisatin through Asymmetric Intramolecular NArylation. Eur. J. Org. Chem. 2015, 4603-4606.

(13) Asano, S.; Takahashi, Y.; Maki, T.; Muranaka, Y.; Cherkasov,

N.; Mae, K., Contactless Mass Transfer for Intra-droplet Extraction.

Sci. Rep. 2020, 10, 7685. The developed software in this work can

be downloaded with detailed operation procedure at

https://github.com/ShusakuASANO/KYOCHAN_Chiral.

(14) Regueira, T.; Yan, W.; Stenby, E. H., Densities of the Binary

Systems n-Hexane plus n-Decane and n-Hexane plus n-Hexadecane

up to 60 MPa and 463 K. J. Chem. Eng. Data 2015, 60, 3631-3645.

(15) The enantiomeric excess values of the samples were determined by UV signal of PDA detector to avoid the influence of artifacts of CD detector.

(16) The range of Hrac‡ and Srac‡ are 26.9-27.8 kcal·mol–1 and

5.04-7.72 cal·mol–1·K–1, respectively, in consideration of the SE of

Eyring plot.

(17) 2a was newly synthesized in this study. See, the Supporting

Information for the detail of the synthesis.

(18) Garcia-Miaja, G.; Troncoso, J.; Romani, L., Density and Heat

Capacity as a Function of Temperature for Binary Mixtures of 1Butyl-3-methylpyridinium Tetrafluoroborate plus Water, plus Ethanol, and plus Nitromethane. J. Chem. Eng. Data 2007, 52, 22612265.

(19) The range of Hrac‡ and Srac‡ are 25.4-26.1 kcal·mol–1 and

2.49-4.39 cal·mol–1·K–1, respectively, in consideration of the SE of

Eyring plot.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る