リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Moderate Molecular Recognitions on ZnO m-Plane and Their Selective Capture/Release of Bio-related Phosphoric Acids」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Moderate Molecular Recognitions on ZnO m-Plane and Their Selective Capture/Release of Bio-related Phosphoric Acids

Kanao, Eisuke Nakano, Katsuya Kamei, Ryoma Hosomi, Takuro Ishihama, Yasushi Adachi, Jun Kubo, Takuya Otsuka, Koji Yanagida, Takeshi 京都大学 DOI:10.1039/d1na00865j

2022.03

概要

Herein, we explore the hidden molecular recognition abilities of ZnO nanowires uniformly grown on the inner surface of an open tubular fused silica capillary via liquid chromatography. Chromatographic evaluation revealed that ZnO nanowires showed a stronger intermolecular interaction with phenylphosphoric acid than any other monosubstituted benzene. Furthermore, ZnO nanowires specifically recognized the phosphate groups present in nucleotides even in the aqueous mobile phase, and the intermolecular interaction increased with the number of phosphate groups. This discrimination of phosphate groups in nucleotides was unique to the rich (10[1 with combining macron]0) m-plane of ZnO nanowires with a moderate hydrophilicity and negative charge. The discrimination could be evidenced by the changes in the infrared bands of the phosphate groups on nucleotides on ZnO nanowires. Finally, as an application of the molecular recognition, nucleotides were separated by the number of phosphate groups, utilizing optimized gradient elution on ZnO nanowire column. Thus, the present results elucidate the unique and versatile molecular selectivity of well-known ZnO nanostructures for the capture and separation of biomolecules.

この論文で使われている画像

参考文献

1 M. Stengel, D. Vanderbilt and N. A. Spaldin, Nat. Mater.,

2009, 8, 392–397.

2 H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa

and Y. Tokura, Nat. Mater., 2012, 11, 103–113.

3 N. C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet and

P. Ghosez, Nat. Commun., 2015, 6, 6677.

4 W. M. Li, J. F. Zhao, L. P. Cao, Z. Hu, Q. Z. Huang, X. C. Wang,

Y. Liu, G. Q. Zhao, J. Zhang, Q. Q. Liu, R. Z. Yu, Y. W. Long,

H. Wu, H. J. Lin, C. T. Chen, Z. Li, Z. Z. Gong, Z. Guguchia,

J. S. Kim, G. R. Stewart, Y. J. Uemura, S. Uchida and

C. Q. Jin, Proc. Natl. Acad. Sci. U. S. A., 2019, 116, 12156.

5 S. Zhang, H. Vo and G. Galli, Chem. Mater., 2021, 33, 3187–

3195.

6 E. J. Braham, D. Sellers, E. Emmons, R. Villarreal,

H. Asayesh-Ardakani, N. A. Fleer, K. E. Farley,

R. Shahbazian-Yassar, R. Arr`

oyave, P. J. Shamberger and

S. Banerjee, Chem. Mater., 2018, 30, 214–224.

7 T. Wang, Y. Shi, F. M. Puglisi, S. Chen, K. Zhu, Y. Zuo, X. Li,

X. Jing, T. Han, B. Guo, K. Bukviˇsov´

a, L. Kacht´ık, M. Kol´ıbal,

C. Wen and M. Lanza, ACS Appl. Mater. Interfaces, 2020, 12,

11806–11814.

8 A. Pucci, M.-G. Willinger, F. Liu, X. Zeng, V. Rebuttini,

G. Clavel, X. Bai, G. Ungar and N. Pinna, ACS Nano, 2012,

6, 4382–4391.

9 G. Guo, L. Ji, X. Shen, B. Wang, H. Li, J. Hu, D. Yang and

A. Dong, J. Mater. Chem. A, 2016, 4, 16128–16135.

10 F. Ji, X. Ren, X. Zheng, Y. Liu, L. Pang, J. Jiang and S. Liu,

Nanoscale, 2016, 8, 8696–8703.

11 X. Liu, Y. Sun, M. Yu, Y. Yin, B. Du, W. Tang, T. Jiang,

B. Yang, W. Cao and M. N. R. Ashfold, Sens. Actuators, B,

2018, 255, 3384–3390.

12 Z. Zhang, Q. Wu, G. Johnson, Y. Ye, X. Li, N. Li, M. Cui,

J. D. Lee, C. Liu, S. Zhao, S. Li, A. Orlov, C. B. Murray,

X. Zhang, T. B. Gunnoe, D. Su and S. Zhang, J. Am. Chem.

Soc., 2019, 141, 16548–16552.

13 H. Kloust, R. Zierold, J.-P. Merkl, C. Schmidtke, A. Feld,

E. P¨

oselt, A. Kornowski, K. Nielsch and H. Weller, Chem.

Mater., 2015, 27, 4914–4917.

14 V. Polshettiwar, B. Baruwati and R. S. Varma, ACS Nano,

2009, 3, 728–736.

15 Y.-B. Hahn, R. Ahmad and N. Tripathy, Chem. Commun.,

2012, 48, 10369–10385.

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Nanoscale Advances

16 Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang,

M. Grundmann, X. Liu and Y. Fu, Mater. Horiz., 2019, 6, 470–

506.

17 M. J. Limo, A. Sola-Rabada, E. Boix, V. Thota, Z. C. Westcott,

V. Puddu and C. C. Perry, Chem. Rev., 2018, 118, 11118–

11193.

18 M. J. Limo, A. Sola-Rabada, E. Boix, V. Thota, Z. C. Westcott,

V. Puddu and C. C. Perry, Chem. Rev., 2018, 118, 11118–

11193.

19 A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer and

M. Moskovits, Nano Lett., 2005, 5, 667–673.

20 W. T. Koo, S. Qiao, A. F. Ogata, G. Jha, J.-S. Jang, V. T. Chen,

I.-D. Kim and R. M. Penner, ACS Nano, 2017, 11, 9276–9285.

21 R. Janissen, P. K. Sahoo, C. A. Santos, A. M. da Silva,

A. A. G. von Zuben, D. E. P. Souto, A. D. T. Costa,

P. Celedon, N. I. T. Zanchin, D. B. Almeida, D. S. Oliveira,

L. T. Kubota, C. L. Cesar, A. P. d. Souza and M. A. Cotta,

Nano Lett., 2017, 17, 5938–5949.

22 M. Chen, L. Mu, S. Wang, X. Cao, S. Liang, Y. Wang, G. She,

J. Yang, Y. Wang and W. Shi, ACS Chem. Neurosci., 2020, 11,

1283–1290.

23 Y. Li, F. Qian, J. Xiang and C. M. Lieber, Mater. Today, 2006,

9, 18–27.

24 H. S. Jung, Y. J. Hong, Y. Li, J. Cho, Y.-J. Kim and G.-C. Yi, ACS

Nano, 2008, 2, 637–642.

25 P. Tongying, F. Vietmeyer, D. Aleksiuk, G. J. Ferraudi,

G. Krylova and M. Kuno, Nanoscale, 2014, 6, 4117–4124.

26 X. Zhao, K. Nagashima, G. Zhang, T. Hosomi, H. Yoshida,

Y. Akihiro, M. Kanai, W. Mizukami, Z. Zhu, T. Takahashi,

M. Suzuki, B. Samransuksamer, G. Meng, T. Yasui, Y. Aoki,

Y. Baba and T. Yanagida, Nano Lett., 2020, 20, 599–605.

27 P. Sharma, H. A. Cho, J.-W. Lee, W. S. Ham, B. C. Park,

N.-H. Cho and Y. K. Kim, Nanoscale, 2017, 9, 15371–15378.

28 Z. Li, R. Yang, M. Yu, F. Bai, C. Li and Z. L. Wang, J. Phys.

Chem. C, 2008, 112, 20114–20117.

29 J. Zhou, N. S. Xu and Z. L. Wang, Adv. Mater., 2006, 18, 2432–

2435.

30 Y. Wang, Y. Wu, F. Quadri, J. D. Prox and L. Guo,

Nanomaterials, 2017, 7(4), 80.

31 C. Wang, T. Hosomi, K. Nagashima, T. Takahashi, G. Zhang,

M. Kanai, H. Yoshida and T. Yanagida, ACS Appl. Mater.

Interfaces, 2020, 12, 44265–44272.

32 R. Yu, C. Pan and Z. L. Wang, Energy Environ. Sci., 2013, 6,

494–499.

33 T. Yasui, T. Yanagida, S. Ito, Y. Konakade, D. Takeshita,

T. Naganawa, K. Nagashima, T. Shimada, N. Kaji,

Y. Nakamura, I. A. Thiodorus, Y. He, S. Rahong, M. Kanai,

H. Yukawa, T. Ochiya, T. Kawai and Y. Baba, Sci. Adv.,

2017, 3, e1701133.

34 T. Kubo, Y. Murakami, M. Tsuzuki, H. Kobayashi, T. Naito,

T. Sano, M. Yan and K. Otsuka, Chem.–Eur. J., 2015, 21,

18095–18098.

35 T. Kubo, E. Kanao, T. Matsumoto, T. Naito, T. Sano, M. Yan

and K. Otsuka, ChemistrySelect, 2016, 1, 5900–5904.

36 E. Kanao, T. Kubo, T. Naito, T. Matsumoto, T. Sano, M. Yan

and K. Otsuka, J. Phys. Chem. C, 2018, 122, 15026–15032.

Nanoscale Adv., 2022, 4, 1649–1658 | 1657

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Open Access Article. Published on 17 February 2022. Downloaded on 5/25/2022 10:50:52 AM.

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Nanoscale Advances

37 E. Kanao, T. Kubo, T. Naito, T. Sano, M. Yan, N. Tanaka and

K. Otsuka, Anal. Chem., 2020, 92, 4065–4072.

38 E. Kanao, T. Kubo, T. Naito, T. Matsumoto, T. Sano, M. Yan

and K. Otsuka, Anal. Chem., 2019, 91, 2439–2446.

39 E. Kanao, T. Morinaga, T. Kubo, T. Naito, T. Matsumoto,

T. Sano, H. Maki, M. Yan and K. Otsuka, Chem. Sci., 2020,

11, 409–418.

40 R. Kamei, T. Hosomi, E. Kanao, M. Kanai, K. Nagashima,

T. Takahashi, G. Zhang, T. Yasui, J. Terao, K. Otsuka,

Y. Baba, T. Kubo and T. Yanagida, ACS Appl. Mater.

Interfaces, 2021, 13, 16812–16819.

41 D. G. Hardie, F. A. Ross and S. A. Hawley, Nat. Rev. Mol. Cell

Biol., 2012, 13, 251–262.

42 C. Bressan, A. Pecora, D. Gagnon, M. Snapyan, S. Labrecque,

P. De Koninck, M. Parent and A. Saghatelyan, eLife, 2020, 9,

e56006.

43 B. Li, S.-X. Dou, J.-W. Yuan, Y.-R. Liu, W. Li, F. Ye, P.-Y. Wang

and H. Li, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 12118.

44 K. Y. Hara and A. Kondo, Microb. Cell Fact., 2015, 14, 198.

45 H. Ghannam, A. Chahboun and M. Turmine, RSC Adv., 2019,

9, 38289–38297.

46 S. L. Cheng, J. H. Syu, S. Y. Liao, C. F. Lin and P. Y. Yeh, RSC

Adv., 2015, 5, 67752–67758.

47 T. Shimada, T. Yasui, A. Yonese, T. Yanagida, N. Kaji,

M. Kanai, K. Nagashima, T. Kawai and Y. Baba,

Micromachines, 2020, 11, 610.

48 L. Cao, J. Kiely, M. Piano and R. Luxton, Sci. Rep., 2018, 8,

12687.

49 V. Gerbreders, M. Krasovska, I. Mihailova, A. Ogurcovs,

E. Sledevskis, A. Gerbreders, E. Tamanis, I. Kokina and

I. Plaksenkova, Sens. Bio-Sens. Res., 2019, 23, 100276.

50 A. Dom´ınguez, S. grosse Holthaus, S. K¨

oppen,

T. Frauenheim and A. L. da Rosa, Phys. Chem. Chem. Phys.,

2014, 16, 8509–8514.

51 L. G. Gagliardi, C. B. Castells, C. R`

afols, M. Ros´

es and

E. Bosch, J. Chem. Eng. Data, 2007, 52, 1103–1107.

52 L. Liu, G. Duclos, B. Sun, J. Lee, A. Wu, Y. Kam, E. D. Sontag,

H. A. Stone, J. C. Sturm, R. A. Gatenby and R. H. Austin, Proc.

Natl. Acad. Sci. U. S. A., 2013, 110, 1686.

53 H.-X. Yuan, Y. Xiong and K.-L. Guan, Mol. Cell, 2013, 49, 379–

387.

54 U. Olsson and M. Wolf-Watz, Nat. Commun., 2010, 1, 111.

55 C. Zhang, Z. Liu, X. Liu, L. Wei, Y. Liu, J. Yu and L. Sun, Acta

Pharm. Sin. B, 2013, 3, 254–262.

1658 | Nanoscale Adv., 2022, 4, 1649–1658

View Article Online

Paper

56 K. Ariga, H. Ito, J. P. Hill and H. Tsukube, Chem. Soc. Rev.,

2012, 41, 5800–5835.

57 A. A. Ahmed, S. Gypser, P. Leinweber, D. Freese and O. K¨

uhn,

Phys. Chem. Chem. Phys., 2019, 21, 4421–4434.

58 M. Yaguchi, T. Uchida, K. Motobayashi and M. Osawa, J.

Phys. Chem. Lett., 2016, 7, 3097–3102.

59 C. Wang, T. Hosomi, K. Nagashima, T. Takahashi, G. Zhang,

M. Kanai, H. Zeng, W. Mizukami, N. Shioya, T. Shimoaka,

T. Tamaoka, H. Yoshida, S. Takeda, T. Yasui, Y. Baba,

Y. Aoki, J. Terao, T. Hasegawa and T. Yanagida, Nano Lett.,

2019, 19, 2443–2449.

60 J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden and

J. M. Jacobson, Nat. Mater., 2011, 10, 596–601.

61 B. Saravanakumar and S.-J. Kim, J. Phys. Chem. C, 2014, 118,

8831–8836.

62 T.-P. Chen, S.-P. Chang, F.-Y. Hung, S.-J. Chang, Z.-S. Hu and

K.-J. Chen, Sensors, 2013, 13, 3941–3950.

63 J. Liu, K. Nagashima, H. Yamashita, W. Mizukami,

J. Uzuhashi, T. Hosomi, M. Kanai, X. Zhao, Y. Miura,

G. Zhang, T. Takahashi, M. Suzuki, D. Sakai,

B. Samransuksamer, Y. He, T. Ohkubo, T. Yasui, Y. Aoki,

J. C. Ho, Y. Baba and T. Yanagida, Commun. Mater., 2020,

1, 58.

64 K. Sun, H.-Y. Su and W.-X. Li, Theor. Chem. Acc., 2013, 133,

1427.

65 S. Akhter, K. Lui and H. H. Kung, J. Phys. Chem., 1985, 89,

1958–1964.

66 D. Mora-Fonz, T. Lazauskas, M. R. Farrow, C. R. A. Catlow,

S. M. Woodley and A. A. Sokol, Chem. Mater., 2017, 29,

5306–5320.

67 T. Enomoto, Y. Nakamori, K. Matsumoto and R. Hagiwara, J.

Phys. Chem. C, 2011, 115, 4324–4332.

68 M. Kohagen, E. Pluhaˇrov´

a, P. E. Mason and P. Jungwirth, J.

Phys. Chem. Lett., 2015, 6, 1563–1567.

69 H. G. Barth, LC GC N. Am., 2018, 36, 830–835.

70 K. Nakamura, T. Takahashi, T. Hosomi, T. Seki, M. Kanai,

G. Zhang, K. Nagashima, N. Shibata and T. Yanagida, ACS

Appl. Mater. Interfaces, 2019, 11, 40260–40266.

71 O. Lupan, N. Magariu, R. Khaledialidusti, A. K. Mishra,

S. Hansen, H. Kr¨

uger, V. Postica, H. Heinrich, B. Viana,

L. K. Ono, B. R. Cuenya, L. Chow, R. Adelung and

T. Pauport´

e, ACS Appl. Mater. Interfaces, 2021, 13, 10537–

10552.

© 2022 The Author(s). Published by the Royal Society of Chemistry

...

参考文献をもっと見る