リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Irregular and suppressed elastic deformation by a structural twist in cellulose nanofibre models」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Irregular and suppressed elastic deformation by a structural twist in cellulose nanofibre models

Uetani, Kojiro 大阪大学

2021.01.12

概要

The elastic responsiveness of single cellulose nanofibres is important for advanced analysis of biological tissues and their use in sophisticated functional materials. However, the mechanical responsiveness derived from the twisted structure of cellulose nanofibres (CNFs) has remained unexplored. In this study, finite element simulations were applied to characterize the deformation response derived from the torsional structure by performing tensile and bending tests of an unconventionally very long and twisted rod model, having the known dimensional parameters and properties of CNFs. The antagonistic action of two types of structural elements (a contour twist and a curvilinear coordinate) was found to result in an irregular deformation response but with only small fluctuations. The contour twist generated rotational displacements under tensile load, but the curvilinear coordinate suppressed rotational displacement. Under bending stress, the contour twist minimized irregular bending deformation because of the orthotropic properties and made the bending stress transferability a highly linear response.

この論文で使われている画像

参考文献

1. Chanzy, H. The continuing debate over the structure of cellulose: historical perspective and outlook. Cellulose 18, 853–856 (2011).

2. Iwamoto, S., Kai, W., Isogai, A. & Iwata, T. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10, 2571–2576 (2009).

3. Saito, T., Kuramae, R., Wohlert, J., Berglund, L. A. & Isogai, A. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14, 248–253 (2013).

4. Hori, R. & Wada, M. The thermal expansion of wood cellulose crystals. Cellulose 12, 479–484 (2005).

5. Fujisawa, S., Saito, T., Kimura, S., Iwata, T. & Isogai, A. Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14, 1541–1546 (2013).

6. Soeta, H., Fujisawa, S., Saito, T. & Isogai, A. Interfacial layer thickness design for exploiting the reinforcement potential of nanocel- lulose in cellulose triacetate matrix. Compos. Sci. Technol. 147, 100–106 (2017).

7. Fujisawa, S., Ikeuchi, T., Takeuchi, M., Saito, T. & Isogai, A. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13, 2188–2194 (2012).

8. Mohammadi, P., Toivonen, M. S., Ikkala, O., Wagermaier, W. & Linder, M. B. Aligning cellulose nanofibril dispersions for tougher fibers. Sci. Rep. 7, 11860 (2017).

9. Uetani, K., Okada, T. & Oyama, H. T. In-plane anisotropic thermally conductive nanopapers by drawing bacterial cellulose hydro- gels. ACS Macro Lett. 6, 345–349 (2017).

10. Uetani, K., Izakura, S., Koga, H. & Nogi, M. Thermal diffusivity modulation driven by the interfacial elastic dynamics between cellulose nanofibers. Nanoscale Adv. 2, 1024–1030 (2020).

11. Capadona, J. R. et al. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat. Nanotechnol. 2, 765–769 (2007).

12. Usov, I. et al. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat. Commun. 6, 7564 (2015).

13. Nyström, G., Arcari, M., Adamcik, J., Usov, I. & Mezzenga, R. Nanocellulose fragmentation mechanisms and inversion of chirality from the single particle to the cholesteric phase. ACS Nano 12, 5141–5148 (2018).

14. Arcari, M. et al. Nanostructural properties and twist periodicity of cellulose nanofibrils with variable charge density. Biomacro- molecules 20, 1288–1296 (2019).

15. Ogawa, Y. Electron microdiffraction reveals the nanoscale twist geometry of cellulose nanocrystals. Nanoscale 11, 21767–21774 (2019).

16. Matthews, J. F. et al. Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr. Res. 341, 138–152 (2006).

17. Yui, T., Nishimura, S., Akiba, S. & Hayashi, S. Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbo- hydr. Res. 341, 2521–2530 (2006).

18. Yui, T. & Hayashi, S. Molecular dynamics simulations of solvated crystal models of cellulose Iα and IIII. Biomacromolecules 2007, 817–824 (2007).

19. Paavilainen, S., Rog, T. & Vattulainen, I. Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. J. Phys. Chem. B 115, 3747–3755 (2011).

20. Hadden, J. A., French, A. D. & Woods, R. J. Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99, 746–756 (2013).

21. Zhao, Z. et al. Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. J. Phys. Chem. A 117, 2580–2589 (2013).

22. Mehandzhiyski, A. Y. et al. A novel supra coarse-grained model for cellulose. Cellulose 27, 4221–4234 (2020).

23. Uto, T., Mawatari, S. & Yui, T. Theoretical study of the structural stability of molecular chain sheet models of cellulose crystal allomorphs. J. Phys. Chem. B 118, 9313–9321 (2014).

24. Uto, T. & Yui, T. DFT Optimization of isolated molecular chain sheet models constituting native cellulose crystal structures. ACS Omega 3, 8050–8058 (2018).

25. Wu, X., Moon, R. J. & Martini, A. Tensile strength of Iβ crystalline cellulose predicted by molecular dynamics simulation. Cellulose 21, 2233–2245 (2014).

26. Lopez, C. A. et al. MARTINI Coarse-grained model for crystalline cellulose microfibers. J. Phys. Chem. B 119, 465–473 (2015).

27. Zadin, V. et al. Simulations of surface stress effects in nanoscale single crystals. Model. Simul. Mater. Sci. Eng. 26, 035006 (2018).

28. Daicho, K., Saito, T., Fujisawa, S. & Isogai, A. The crystallinity of nanocellulose: dispersion-induced disordering of the grain boundary in biologically structured cellulose. ACS Appl. Nano Mater. 1, 5774–5785 (2018).

29. Chen, P., Ogawa, Y., Nishiyama, Y., Ismail, A. E. & Mazeau, K. Linear, non-linear and plastic bending deformation of cellulose nanocrystals. Phys. Chem. Chem. Phys. 18, 19880–19887 (2016).

30. Daicho, K., Kobayashi, K., Fujisawa, S. & Saito, T. Crystallinity-independent yet modification-dependent true density of nanocel- lulose. Biomacromolecules 21, 939–945 (2020).

参考文献をもっと見る