リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Prevascularization-free Primary Subcutaneous Transplantation of Xenogeneic Islets Co-encapsulated with Hepatocyte Growth Factor」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Prevascularization-free Primary Subcutaneous Transplantation of Xenogeneic Islets Co-encapsulated with Hepatocyte Growth Factor

Yang, Sin-Yu 京都大学 DOI:10.14989/doctor.k23368

2021.05.24

概要

Background. Subcutaneous pouch is a potential site for islet transplantation. However, insufficient oxygen supply remains challenging. Pretreatment of neovascularization using basic fibroblast growth factor can solve this, but it needs 2× operations. We developed a device that contains rat islets in chitosan gel packed in a bag made of highly biocompatible ethylene vinyl alcohol copolymer porous membrane. This study investigated whether coencapsulation of hepatocyte growth factor (HGF) with islets in the device enables novel method of prevascularization-free primary subcutaneous transplantation.

Methods. In vitro experiments examined slow release of HGF from the chitosan gel and islet-protection effect of HGF against hypoxia. In the latter, rat islets with/without HGF (200ng/mL) was cultured in 1% oxygen. In in vivo experiment, fabricated device with/without HGF (10 μg/device) containing rat islets was primarily transplanted to streptozotocin-induced diabetic mice subcutaneously.

Results. In vitro experiments showed sustained release of HGF for 28 d and alleviating effect of HGF on cell death and glucose-responsive insulin release after hypoxic culture. Islet + HGF mice, but not islet-alone mice, showed decreased nonfasting blood glucose and regained body weight after transplantation. In intraperitoneal glucose tolerance test, islet + HGF mice exhibited decreased fasting blood glucose (200 ± 55mg/dL) and good blood glucose disappearance rate (K value) (0.817 ± 0.101) comparing to normal mice (123 ± 28mg/dL and 1.074 ± 0.374, respectively). However, in islet-alone mice, fasting blood glucose was high (365 ± 172mg/dL) and K value was indeterminable. Serum insulin in islet + HGF mice (1.58 ± 0.94 μg/L) was close to normal mice (1.66 ± 0.55 μg/L), whereas those in islet-alone mice (0.279 ± 0.076 μg/L) and diabetic mice (0.165 ± 0.079 μg/L) were low. Immunohistochemical examination showed intact insulin- and glucagon-positive islets in retrieved devices with HGF, but no intact islet was found in the device without HGF.

Conclusions. HGF could enhance islet survival in hypoxia and enhance in vivo function of encapsulated islets after primary subcutaneous transplantation.

この論文で使われている画像

参考文献

1. Moberg L, Johansson H, Lukinius A, et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet. 2002;360:2039–2045.

2. Hwa AJ, Weir GC. Transplantation of macroencapsulated insulin-producing cells. Curr Diab Rep. 2018;18:50.

3. Kawakami Y, Iwata H, Gu YJ, et al. Successful subcutaneous pancreatic islet transplantation using an angiogenic growth factor-releasing device. Pancreas. 2001;23:375–381.

4. Yang S-Y, Yang K-C, Sumi S. Effect of basic fibroblast growth factor on xenogeneic islets in subcutaneous transplantation—A murine model. Transplant Proc. 2019;51:1458–1462.

5. García-Ocaña A, Vasavada RC, Cebrian A, et al. Transgenic overexpression of hepatocyte growth factor in the beta-cell markedly improves islet function and islet transplant outcomes in mice. Diabetes. 2001;50:2752–2762.

6. Lopez-Talavera JC, Garcia-Ocaña A, Sipula I, et al. Hepatocyte growth factor gene therapy for pancreatic islets in diabetes: reducing the minimal islet transplant mass required in a glucocorticoid-free rat model of allogeneic portal vein islet transplantation. Endocrinology. 2004;145:467–474.

7. Garcia-Ocaña A, Takane KK, Syed MA, et al. Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhances islet mass, and induces mild hypoglycemia. J Biol Chem. 2000;275:1226–1232.

8. Hayek A, Beattie GM, Cirulli V, et al. Growth factor/matrix-induced proliferation of human adult beta-cells. Diabetes. 1995;44:1458–1460.

9. Demirci C, Ernst S, Alvarez-Perez JC, et al. Loss of HGF/c-Met signaling in pancreatic β-cells leads to incomplete maternal β-cell adaptation and gestational diabetes mellitus. Diabetes. 2012;61:1143–1152.

10. Oliveira AG, Araújo TG, Carvalho BM, et al. The role of hepatocyte growth factor (HGF) in insulin resistance and diabetes. Front Endocrinol (Lausanne). 2018;9:503.

11. Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11:834–848.

12. Fiaschi-Taesch N, Stewart AF, Garcia-Ocaña A. Improving islet transplantation by gene delivery of hepatocyte growth factor (HGF) and its downstream target, protein kinase B (PKB)/Akt. Cell Biochem Biophys. 2007;48(2-3):191–199.

13. Mellado-Gil J, Rosa TC, Demirci C, et al. Disruption of hepatocyte growth factor/c-Met signaling enhances pancreatic beta-cell death and accelerates the onset of diabetes. Diabetes. 2011;60:525–536.

14. Ozaki M, Haga S, Zhang HQ, et al. Inhibition of hypoxia/reoxygenenation-induced oxidative stress in HGF-stimulated antiapoptotic signaling: role of PI3-K and Akt kinase upon rac1. Cell Death Differ. 2003;10:508–515.

15. He F, Wu LX, Shu KX, et al. HGF protects cultured cortical neurons against hypoxia/reoxygenation induced cell injury via ERK1/2 and PI-3K/Akt pathways. Colloids Surf B Biointerfaces. 2008;61:290–297.

16. Garcia-Ocana A, Takane KK, Reddy VT, et al. Adenovirus-mediated hepatocyte growth factor expression in mouse islets improves pancreatic islet transplant performance and reduces beta cell death. J Biol Chem. 2003;278:343–351.

17. Dai C, Huh CG, Thorgeirsson SS, et al. Beta-cell-specific ablation of the hepatocyte growth factor receptor results in reduced islet size, impaired insulin secretion, and glucose intolerance. Am J Pathol. 2005;167:429–436.

18. Wu H, Yoon AR, Li F, et al. RGD peptide-modified adenovirus expressing hepatocyte growth factor and X-linked inhibitor of apoptosis improves islet transplantation. J Gene Med. 2011;13:658–669.

19. Kilkenny C, Browne WJ, Cuthill IC, et al. Improving bioscience research reporting: The arrive guidelines for reporting animal research. Animals. 2013;4:35–44.

20. Yang KC, Yanai G, Yang SY, et al. Low-adhesive ethylene vinyl alcoholbased packaging to xenogeneic islet encapsulation for type 1 diabetes treatment. Biotechnol Bioeng. 2018;115:2341–2355.

21. Wang W, Gu Y, Tabata Y, et al. Reversal of diabetes in mice by xenotransplantation of a bioartificial pancreas in a prevascularized subcutaneous site. Transplantation. 2002;73:122–129.

22. Wang W, Gu Y, Hori H, et al. Subcutaneous transplantation of macroencapsulated porcine pancreatic endocrine cells normalizes hyperglycemia in diabetic mice. Transplantation. 2003;76:290–296.

23. Kim KH, Kim H. Progress of antibody-based inhibitors of the HGFcMET axis in cancer therapy. Exp Mol Med. 2017;49:e307.

24. Vaithilingam V, Evans MDM, Lewy DM, et al. Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted. Sci Rep. 2017;7:1–13.

25. Jourdan G, Dusseault J, Benhamou PY, et al. Co-encapsulation of bioengineered IGF-II-producing cells and pancreatic islets: effect on beta-cell survival. Gene Ther. 2011;18:539–545.

26. Perez-Basterrechea M, Esteban MM, Alvarez-Viejo M, et al. Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation. PLoS One. 2017;12:e0180695.

27. Yeung TY, Seeberger KL, Kin T, et al. Human mesenchymal stem cells protect human islets from pro-inflammatory cytokines. PLoS One. 2012;7:e38189.

28. Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 2019;565:505–510.

29. Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007;117:1219–1222.

30. Qi Y, Li M, Xu L, et al. Therapeutic role of human hepatocyte growth factor (HGF) in treating hair loss. PeerJ. 2016;4:e2624.

参考文献をもっと見る