リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Non-destructive high-throughput measurement of elastic-viscous properties of maize using a novel ultra-micro sensor array and numerical validation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Non-destructive high-throughput measurement of elastic-viscous properties of maize using a novel ultra-micro sensor array and numerical validation

Nakashima, Taiken Tomobe, Haruka Morigaki, Takumi Yang, Mengfan Yamaguchi, Hiroto Kato, Yoichiro Guo, Wei Sharma, Vikas Kimura, Harusato Morikawa, Hitoshi 京都大学 DOI:10.1038/s41598-023-32130-5

2023

概要

Maize is the world's most produced cereal crop, and the selection of maize cultivars with a high stem elastic modulus is an effective method to prevent cereal crop lodging. We developed an ultra-compact sensor array inspired by earthquake engineering and proposed a method for the high-throughput evaluation of the elastic modulus of maize cultivars. A natural vibration analysis based on the obtained Young’s modulus using finite element analysis (FEA) was performed and compared with the experimental results, which showed that the estimated Young’s modulus is representative of the individual Young’s modulus. FEA also showed the hotspot where the stalk was most deformed when the corn was vibrated by wind. The six tested cultivars were divided into two phenotypic groups based on the position and number of hotspots. In this study, we proposed a non-destructive high-throughput phenotyping technique for estimating the modulus of elasticity of maize stalks and successfully visualized which parts of the stalks should be improved for specific cultivars to prevent lodging.

この論文で使われている画像

参考文献

1. Berry, P. M. et al. Understanding and reducing lodging in cereals. Adv. Agron. 84, 217–271 (2004).

2. Tirado, S. B., Hirsch, C. N. & Springer, N. M. Utilizing temporal measurements from UAVs to assess root lodging in maize and its

impact on productivity. F. Crop. Res. 262, 108014 (2021).

3. Ookawa, T. et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun.

1, 132 (2010).

4. Berry, P. M. et al. Development and application of a model for calculating the risk of stem and root lodging in maize. F. Crop. Res.

262, 108037 (2021).

5. Farquhar, T., Meyer, H. & Van Beem, J. Effect of aeroelasticity on the aerodynamics of wheat. Mater. Sci. Eng. C 7, 111–117 (1999).

6. Gardiner, B., Berry, P. & Moulia, B. Review: Wind impacts on plant growth, mechanics and damage. Plant Sci. 245, 94–118 (2016).

7. Joseph, G. M. D. et al. Determination of crop dynamic and aerodynamic parameters for lodging prediction. J. Wind Eng. Ind.

Aerodyn. 202, 104169 (2020).

8. Al-Zube, L., Sun, W., Robertson, D. & Cook, D. The elastic modulus for maize stems. Plant Methods 14, 1–12 (2018).

9. Nakata, M. T., Takahara, M., Sakamoto, S., Yoshida, K. & Mitsuda, N. High-throughput analysis of arabidopsis stem vibrations to

identify mutants with altered mechanical properties. Front. Plant Sci. 9, 1–15 (2018).

10. Zajączkowska, U., Kucharski, S., Nowak, Z. & Grabowska, K. Morphometric and mechanical characteristics of Equisetum hyemale

stem enhance its vibration. Planta 245, 835–848 (2017).

11. Żebrowski, J. Dynamic behaviour of inflorescence-bearing Triticale and Triticum stems. Planta 207, 410–417 (1999).

12. Baker, C. J. The development of a theoretical model for the windthrow of plants. J. Theor. Biol. 175, 355–372 (1995).

13. Baker, C. J. et al. A method for the assessment of the risk of wheat lodging. J. Theor. Biol. 194, 587–603 (1998).

14. Baker, C. J., Sterling, M. & Berry, P. A generalised model of crop lodging. J. Theor. Biol. 363, 1–12 (2014).

15. Burr, B. & Burr, F. A. Recombinant inbreds for molecular mapping in Maize. Trends Genet. 7, 55–60 (1991).

16. Coque, M., Bertin, P., Hirel, B. & Gallais, A. Genetic variation and QTLs for 15N natural abundance in a set of maize recombinant

inbred lines. F. Crop. Res. 97, 310–321 (2006).

Scientific Reports |

Vol:.(1234567890)

(2023) 13:4914 |

https://doi.org/10.1038/s41598-023-32130-5

10

www.nature.com/scientificreports/

17. Pineda-Hidalgo, K. V. et al. Characterization of free amino acid QTLs in maize opaque2 recombinant inbred lines. J. Cereal Sci.

53, 250–258 (2011).

18. Huang, J., Liu, W., Zhou, F., Peng, Y. & Wang, N. Mechanical properties of maize fibre bundles and their contribution to lodging

resistance. Biosyst. Eng. 151, 298–307 (2016).

19. Adamo, F., Attivissimo, F., Fabbiano, L., Giaquinto, N. & Spadavecchia, M. Soil moisture assessment by means of compressional

and shear wave velocities: Theoretical analysis and experimental setup. Meas. J. Int. Meas. Confed. 43, 344–352 (2010).

20. Koper, K. D., Wallace, T. C. & Aster, R. C. Seismic recordings of the Carlsbad, New Mexico, pipeline explosion of 19 August 2000.

Bull. Seismol. Soc. Am. 93, 1427–1432 (2003).

21. Fortin, J., Guéguen, Y. & Schubnel, A. Effects of pore collapse and grain crushing on ultrasonic velocities and Vp/Vs. J. Geophys.

Res. Solid Earth 112, 1–16 (2007).

22. Taylor, O.-D.S., Abdollahi, M. & Vahedifard, F. Statistical distributions of wave velocities and elastic moduli in near-surface

unsaturated soils. Soil Dyn. Earthq. Eng. 157, 107247 (2022).

23. Arai, H. & Tokimatsu, K. S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull. Seismol. Soc. Am. 94, 53–63

(2004).

24. Brincker, R. & Zhang, L. Frequency domain decomposition revisited. IOMAC 2009—3rd Int. Oper. Modal Anal. Conf. 615–626

(2009).

25. Uebayashi, H., Cho, I., Ohori, M., Yoshida, K. & Arai, H. The effect of body waves on phase-velocity determined by the spatial

autocorrelation (SPAC) method, evaluated using full-wave modelling. Explor. Geophys. 51, 483–493 (2020).

26. Dreossi, I. & Parolai, S. Robust estimation of 1D shear-wave quality factor profiles for site response analysis using seismic noise.

Soil Dyn. Earthq. Eng. 161, 107387 (2022).

27. Acar, C. & Shkel, A. MEMS vibratory gyroscopes: structural approaches to improve robustness (Springer, 2008).

28. Bhattacharya, S., Murali Krishna, A., Lombardi, D., Crewe, A. & Alexander, N. Economic MEMS based 3-axis water proof accelerometer for dynamic geo-engineering applications. Soil Dyn. Earthq. Eng. 36, 111–118 (2012).

29. Hou, Y., Jiao, R. & Yu, H. MEMS based geophones and seismometers. Sensors Actuators A Phys. 318, 112498 (2021).

30. Cui, J. et al. Design and optimization of MEMS heart sound sensor based on bionic structure. Sensors Actuators A Phys. 333, 113188

(2022).

31. Gockenbach, M. S. Understanding and implementing the finite element method (SIAM, 2006).

32. Taylor, R. L. & Papadopoulos, P. On a finite element method for dynamic contact/impact problems. Int. J. Numer. Methods Eng.

36, 2123–2140 (1993).

33. Rahardjo, H. et al. Tree stability in an improved soil to withstand wind loading. Urban For. Urban Green. 8, 237–247 (2009).

34. Sellier, D., Fourcaud, T. & Lac, P. A finite element model for investigating effects of aerial architecture on tree oscillations. Tree

Physiol. 26, 799–806 (2006).

35. Dupuy, L. X., Fourcaud, T., Lac, P. & Stokes, A. A generic 3D finite element model of tree anchorage integrating soil mechanics

and real root system architecture. Am. J. Bot. 94, 1506–1514 (2007).

36. Lamb, H. On waves in an elastic plate. Proc. R. Soc. Lond. Ser. A Contain Pap. A Math. Phys. Charact. 93, 114–128 (1917).

37. Wang, L. & Yuan, F. G. Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments.

Compos. Sci. Technol. 67, 1370–1384 (2007).

38. Houzeaux, G. et al. Domain decomposition methods for domain composition purpose: Chimera, overset, gluing and sliding mesh

methods. Arch. Comput. Methods Eng. 24, 1033–1070 (2017).

39. Von Forell, G., Robertson, D., Lee, S. Y. & Cook, D. D. Preventing lodging in bioenergy crops: A biomechanical analysis of maize

stalks suggests a new approach. J. Exp. Bot. 66, 4367–4371 (2015).

40. Gangwar, T. et al. Multi-scale modelling predicts plant stem bending behaviour in response to wind to inform lodging resistance.

R. Soc. Open Sci. 10, 221410 (2023).

41. Chesshire, G. & Henshaw, W. D. Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys.

90, 1–64 (1990).

42. Bathe, K. J. & Zhang, L. The finite element method with overlapping elements—a new paradigm for CAD driven simulations.

Comput. Struct. 182, 526–539 (2017).

43. Huang, J. & Bathe, K. J. Overlapping finite element meshes in AMORE. Adv. Eng. Softw. 144, 102791 (2020).

44. Sievänen, R., Perttunen, J., Nikinmaa, E. & Posada, J. M. Functional structural plant models—Case LIGNUM. Plant growth model.

Simulation, Vis. Appl. Proc.—PMA09 3–9 (2009)

45. Hudek, C., Sturrock, C. J., Atkinson, B. S., Stanchi, S. & Freppaz, M. Root morphology and biomechanical characteristics of high

altitude alpine plant species and their potential application in soil stabilization. Ecol. Eng. 109, 228–239 (2017).

46. Ndour, A., Vadez, V., Pradal, C. & Lucas, M. Virtual plants need water too: Functional-structural root system models in the context

of drought tolerance breeding. Front. Plant Sci. 8, 1577 (2017).

47. Munz, E. et al. A functional imaging study of germinating oilseed rape seed. New Phytol. 216, 1181–1190 (2017).

48. Mascia, N. T. & Nicolas, E. A. Determination of Poisson’s ratios in relation to fiber angle of a tropical wood species. Constr. Build.

Mater. 41, 691–696 (2013).

49. Kim, G.-W. et al. Determination of the viscoelastic properties of apple flesh under quasi-static compression based on finite element

method optimization. Food Sci. Technol. Res. 14, 221–231 (2008).

50. Baker, C.J., Sterling, M. & Berry, P. A generalised model of crop lodging. J. Theor. Biol. 363, 1–12 (2014).

51. Robbins, H. & Monro, S. A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951).

Acknowledgements

Funding was provided by the Japan Society for the Promotion of Science Grant Numbers 17J02383, 20K22599,

21K05537 and 22K14964.

Author contributions

T.N., Y.K., T.M., M.Y., H.Y., and H.T. designed the study. T.N., T.M., and M. Y. H.Y. collected experimental data.

H.T., V.S., H.K., and H.M. proposed the numerical analysis scheme and implemented the software. T.N. and H.T.

developed and standardized the protocols. T.N., H.K., H.M., W.G. and H.T. analyzed the data, and all authors

wrote the paper.

Competing interests The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to H.T.

Scientific Reports |

(2023) 13:4914 |

https://doi.org/10.1038/s41598-023-32130-5

11

Vol.:(0123456789)

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

Vol:.(1234567890)

(2023) 13:4914 |

https://doi.org/10.1038/s41598-023-32130-5

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る