リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tailored-design of radiation modified imprinted polymer adsorbent for selective removal of targeted ion」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tailored-design of radiation modified imprinted polymer adsorbent for selective removal of targeted ion

Othman, Nor Azillah Fatimah Binti オスマン, ノル アジラ ファティマ ビンティ 群馬大学

2020.03.24

概要

金属イオンを分離する手法は様々あるが、吸着法は、低濃度の金属イオンを分離するための効果的なプロセスとして知られている。吸着法の中で高分子材料にキレートの機能を付与した方法は代表的な手法のひとつである。しかしながら、従来のキレート化高分子吸着剤の吸着性能は問題ないが、選択性の面で限界がある。近年、高分子材料に空洞を付与し、それを用いて溶液中の標的イオンを選択的に認識するため金属イオンインプリント高分子材料が大きな注目を集めている。金属イオンの吸着を効率的に行うためにはバッチ式ではなく連続法で溶液を処理する必要がある。連続法では金属イオンは高分子材料の内部まで浸透することは想定しておらず、表面に吸着点を配置することが効率的である。本研究では、放射線誘起グラフト重合および架橋技術を使用することにより、表面イオンインプリント高分子(IIP)の合成におけるインプリンティングの新しい概念を提案した。この目的のためにポリエチレン被覆ポリプロピレン不織繊維(PE / PP-NWF)をポリマー基材として用い、2 つの異なるアプローチ(「ex-situ」および「in-situ」テンプレート含浸法)により基材の表面にグラフトされたインプリント層を作製した。

「ex-situ」アプローチでは、アミンベースのモノマーである 2-(ジメチルアミノ)エチルメタクリレート(DMAEMA)を PE / PP-NWF にグラフト重合(P-DMAEMA)し、その後、吸着によりトリウム錯体を形成することで表面イオンインプリント高分子を作製した。

その後、基材上でジビニルベンゼン(DVB)を用いて架橋を行うことでキャビティを形成し、最後にテンプレートを除去した。バッチ吸着実験において pH、初期吸着質濃度、接触時間、温度などのパラメーターの影響を検討した。実験データは、吸着性能を決定するためのいくつかの等温線および速度論モデルと相関していた。P-DMAEMA は、トリウムと比較して、ウランに対して好ましい吸着性能を示した。ただし、トリウム吸着の選択性は表面イオンインプリント高分子を使用して改善された。表面イオンインプリント高分子のウランに対するトリウムの最大選択性係数比は 3.09 であったが、従来のキレート化高分子吸着剤に対する表面イオンインプリント高分子の相対選択性比は 11.41 でであった。しかし、選択率はまだ十分ではない。原因として考えられるのはテンプレートとしての複合体形成がグラフト重合後では、基材によるグラフト鎖の運動性の束縛により十分でなかったと考えられる。

性能の更なる向上を計るために表面イオンインプリント高分子の合成においてアミンをリン酸官能基で置き換えて「in-situ」アプローチを行った。このアプローチでは、まずトリウムと重合性モノマーである 2-ヒドロキシルメタクリル酸との錯体形成を行った。グラフト重合前に錯体形成を行うことでテンプレートの導入を確実に行った。次に、DVB を用いて錯体を囲む 3 次元架橋ネットワークを作製することでトリウムをトラップし、同時に PE / PP-NWF にグラフト重合を行った。最後に、テンプレートイオンを浸出して、テンプレートの空洞を残した。このために、最初に最適なグラフト率を達成するために必要なトリウムのテンプレートを含む 2-ヒドロキシルメタクリル酸エマルジョンの安定性、照射放射線量などの重合条件を検討した。得られた結果から錯体形成のメカニズムを仮定し、錯体形成メカニズムの理論的予測を行い、実測を再現しました。理論、実測の両方の結果は、カルボニルおよびリン酸基が金属イオン-モノマー複合体を構築するのに支配的であること示しており、錯体形成のメカニズムを明らかにした。最適条件下で調製した表面イオンインプリント高分子は 3.293 g / L の最大分配係数を達成し、ウランに対するトリウムの選択係数比は pH 3.5、90 分の接触時間で 9.5 であった。表面イオンインプリント高分子の吸着挙動は、トリウムとウランの両方の吸着に対する擬似 2 次動力学モデルに従い、表面イオンインプリント高分子は 4 サイクルまで約 80%の再生効率を維持できることを明らかにした。

以上のように本研究では表面イオンインプリント高分子を新たに提案し、金属イオンの選択的吸着能が向上することを明らかにした。

この論文で使われている画像

参考文献

1. Ramasamy, D.L., A. Wojtuś, E. Repo, et al., Ligand immobilized novel hybrid adsorbents for rare earth elements (REE) removal from waste water: Assessing the feasibility of using APTES functionalized silica in the hybridization process with chitosan. Chemical Engineering Journal, 2017. 330: p. 1370-1379.

2. Saad, D.M., E.M. Cukrowska, and H. Tutu, Functionalisation of cross-linked polyethylenimine for the removal of As from mining wastewater. Water SA, 2013. 39(2): p. 257-264.

3. Saad, D.M., E.M. Cukrowska, and H. Tutu, Modified cross-linked polyethylenimine for the removal of selenite from mining wastewaters. Toxicological & Environmental Chemistry, 2013. 95(3): p. 409-421.

4. Mahfoudhi, N. and S. Boufi, Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose, 2017. 24(3): p. 1171-1197.

5. Siti, N., H. Mohd, L.K. Md, et al., Adsorption process of heavy metals by low-cost adsorbent: a review. World Applied Sciences Journal, 2013. 28(11): p. 1518-1530.

6. Singh, N., G. Nagpal, and S. Agrawal, Water purification by using adsorbents: a review. Environmental Technology & Innovation, 2018. 11: p. 187-240.

7. Ju, W., A. Bagger, G.-P. Hao, et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO 2. Nature communications, 2017. 8(1): p. 944.

8. Liu, C., Y. Huang, N. Naismith, et al., Novel polymeric chelating fibers for selective removal of mercury and cesium from water. Environmental science & technology, 2003. 37(18): p. 4261-4268.

9. Gu, S., L. Wang, X. Mao, et al., Selective Adsorption of Pb (II) from Aqueous Solution by Triethylenetetramine-Grafted Polyacrylamide/Vermiculite. Materials, 2018. 11(4): p. 514.

10. Goh, E. and S. Effendi, Overview of an effective governance policy for mineral resource sustainability in Malaysia. Resources Policy, 2017. 52: p. 1-6.

11. Minerals, M. Guidelines to doing mining business in Malaysia. The Gateway to Malaysia’s Resource Industry 2016 28 April 2019]; Available from: http://malaysianminerals.com/.

12. Hamzah, Z., Determination of Heavy Minerals in ‘Amang’ From Kampung Gajah Ex-mining Area. Malaysian Journal of Analytical Sciences, 2009. 13(2): p. 194- 203.

13. Hamzah, Z., A. Saat, Z.A. Bakar, et al. Anthropogenic heavy metals, U-238 and Th-232 profiles in sediments from an abandoned tin mining lake in Malaysia. in Proceedings of 3rd International Conference on Chemical, Biological and Environmental Engineering, Singapore. 2011.

14. Legislation, F.S., Environmental Quality Act 1974 [ACT 127]. Environmental Quality (Sewage and Industrial Effluents) Regulation, 1979.

15. Rao, T., P. Metilda, and J. Gladis, Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination—an overview. Talanta, 2006. 68(4): p. 1047-1064.

16. Kones, J., N. Azhar, N.A. Sapiee, et al., Alkaline Fusion of Malaysian Monazite and Xenotime for The Separation of Thorium and Uranium. Jurnal Sains Nuklear Malaysia, 2019. 31(1): p. 37-41.

17. Branger, C., W. Meouche, and A. Margaillan, Recent advances on ion-imprinted polymers. Reactive and Functional Polymers, 2013. 73(6): p. 859-875.

18. Pustam, A.N. and S.D. Alexandratos, Engineering selectivity into polymer- supported reagents for transition metal ion complex formation. Reactive and Functional Polymers, 2010. 70(8): p. 545-554.

19. Mafu, L.D., T.A.M. Msagati, and B.B. Mamba, Ion-imprinted polymers for environmental monitoring of inorganic pollutants: synthesis, characterization and applications. Environmental Science and Pollution Research, 2013. 20(2): p. 790-802.

20. Hande, P.E., A.B. Samui, and P.S. Kulkarni, Highly selective monitoring of metals by using ion-imprinted polymers. Environ Sci Pollut Res Int, 2015. 22(10): p. 7375-404.

21. Gao, B. and Y. Zhang, Preparation of Fe(III) ion surface-imprinted material for removing Fe(III) impurity from lanthanide ion solutions. Journal of Industrial and Engineering Chemistry, 2015. 24: p. 351-358.

22. Chang, X. and Y. Cui, Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique. Talanta, 2007. 71(1): p. 38-43.

23. Jiang, N. and Z. Hu, Selective solid-phase extraction of nickel(II) using a surface- imprinted silica gel sorbent. Analytica Chimica Acta, 2006. 577(2): p. 225-231.

24. Fallah, N., M. Taghizadeh, and S. Hassanpour, Selective adsorption of Mo(VI) ions from aqueous solution using a surface-grafted Mo(VI) ion imprinted polymer. Polymer, 2018. 144: p. 80-91.

25. Ting, T.M., M.M. Nasef, and P. Sithambaranathan, Kinetic investigations of emulsion- and solvent-mediated radiation induced graft copolymerization of glycidyl methacrylate onto nylon-6 fibres. Journal of Radioanalytical and Nuclear Chemistry, 2017. 311(1): p. 843-857.

26. Koki, I.B., S.M. Zain, K.H. Low, et al., Development of water quality index of ex- mining ponds in Malaysia. Malaysian Journal of Fundamental and Applied Sciences, 2019. 15(1): p. 54-60.

27. Ali, B.N.M., C.Y. Lin, F. Cleophas, et al., Assessment of heavy metals contamination in Mamut river sediments using sediment quality guidelines and geochemical indices. Environmental monitoring and assessment, 2015. 187(1): p. 4190.

28. Meor Yusoff, M., M. Kaironie, K. Nursaidatul, et al., An Alternative Alkaline Fusion Process for the Production of Heavy Rare Earth, Thorium, Uranium and Phosphate from Malaysian Xenotime. 2015.

29. Rare earth reserves worldwide as of 2016, by country (un 1,000 metric tons REO). 2017, Statista: Statista 2017.

30. Badrulhisham, A.A., Meor Yusoff, M.S. , Mid-stream sector, in Blueprint for the establishment of rare earth-based industries in Malaysia: A starategic new source for economic growth. 2014, Akademi Sains Negara: Kuala Lumpur. p. 52-64.

31. Ali, S., Social and environmental impact of the rare earth industries. Resources, 2014. 3(1): p. 123-134.

32. Al-Areqi, W.M., A.A. Majid, and S. Sarmani. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP). in AIP conference proceedings. 2014. AIP.

33. Al-Areqi, W., A.M. Amran, and S. Sukiman, Digestion Study of Water Leach Purification (WLP) Residue for Possibility of Thorium Extraction. Malaysian Journal of Analytical Sciences, 2014. 18(1): p. 221-225.

34. Sulaiman, M., M. Yusoff, N.S. Kamaruzaman, et al. Standardless EDXRF Analysis Methods of U and Th in Malaysian Tin Slag Waste. in Materials Science Forum. 2016. Trans Tech Publ.

35. Sun, H. and T.M. Semkow, Mobilization of thorium, radium and radon radionuclides in ground water by successive alpha-recoils. Journal of Hydrology, 1998. 205: p. 126−136.

36. Lung, M. and O. Gremm, Perspectives of the thorium fuel cycle. Nuclear Engineering and Design, 1998. 180: p. 133-146.

37. Sakai, N. and M. Yoneda, Potential Health Risk of Heavy Metals in Malaysia, in Environmental Risk Analysis for Asian-Oriented, Risk-Based Watershed Management. 2018, Springer. p. 19-32.

38. Tokonami, S., H. Yonehara, S. Akiba, et al., Natural radiation levels in Tamil Nadu and Kerala, India, in Radioactivity in the Environment. 2005, Elsevier. p. 554-559.

39. Taylor, C.D., Mineralogy of Uranium and Thorium (RJ Lauf). Economic Geology, 2018. 113(6): p. 1448-1449.

40. Sanusi, M., A. Ramli, N. Basri, et al., Thorium distribution in the soils of Peninsular Malaysia and its implications for Th resource estimation. Ore Geology Reviews, 2017. 80: p. 522-535.

41. Al-Areqi, W.M., A. Ab Majid, and S. Sarmani. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP). in International Nuclear Science, Technology and Engineering Conference 2013: Advancing Nuclear Research and Energy Development, iNuSTEC 2013. 2014. American Institute of Physics Inc.

42. Al-Areqi, W.M., C.N.A.C.Z. Bahri, A.A. Majid, et al., SOLVENT EXTRACTION OF THORIUM FROM RARE EARTH ELEMENTS IN MONAZITE THORIUM CONCENTRATE. Malaysian Journal of Analytical Sciences, 2017. 21(6): p. 1250-1256.

43. Ruf, M.I.F.M., C.N.A.C.Z. Bahri, W.M. Al-Areqi, et al. Standardless EDXRF application for quantification of thorium (Th), uranium (U) and rare earth elements (REEs) in various Malaysian rare earth ores. in AIP Conference Proceedings. 2016. AIP Publishing.

44. AL-Areqi, W.M., A.A. Majid, S. Sarmani, et al. Thorium: Issues and prospects in Malaysia. in AIP Conference Proceedings. 2015. AIP Publishing.

45. Alnour, I., H. Wagiran, N. Ibrahim, et al. Determination of the elemental concentration of uranium and thorium in the products and by-products of amang tin tailings process. in AIP Conference Proceedings. 2017. AIP Publishing.

46. Baharim, N.B., Spatial and Temporal Distributions of Water Physicochemical, Sediment Quality and Sedimentation in Sembrong Reservoir. 2015, Universiti Teknologi Malaysia.

47. Azhar, G., Managing Malaysian water resources development. Buletin Kesihatan Masyarakat Isu Khas, 2000. 200: p. 40-58.

48. Prasanna, M., S. Praveena, S. Chidambaram, et al., Evaluation of water quality pollution indices for heavy metal contamination monitoring: a case study from Curtin Lake, Miri City, East Malaysia. Environmental Earth Sciences, 2012. 67(7): p. 1987-2001.

49. Shazili, N.A.M., K. Yunus, A.S. Ahmad, et al., Heavy metal pollution status in the Malaysian aquatic environment. Aquatic Ecosystem Health & Management, 2006. 9(2): p. 137-145.

50. Chan, N.W., Managing urban rivers and water quality in Malaysia for sustainable water resources. International Journal of Water Resources Development, 2012. 28(2): p. 343-354.

51. Sapiee, N.A., K.M. Takip, R. Hazan, et al. Extraction of thorium from Malaysian xenotime for preparation of nuclear grade thorium. in AIP Conference Proceedings. 2019. AIP Publishing.

52. Bejan, D. and N.J. Bunce, Acid mine drainage: electrochemical approaches to prevention and remediation of acidity and toxic metals. Journal of Applied Electrochemistry, 2015. 45(12): p. 1239-1254.

53. Kulkarni, S.J., An Insight into Electro-dialysis for Water Treatment. International Journal of Scientific Research in Science and Technology, 2017. 2(3): p. 506-509.

54. Frioui, S., R. Oumeddour, and S. Lacour, Highly selective extraction of metal ions from dilute solutions by hybrid electrodialysis technology. Separation and Purification Technology, 2017. 174: p. 264-274.

55. Torosyan, V.F., E.S. Torosyan, P. Sorokin, et al. Updating of sewage-purification facilities of electroplating enterprises with counterflow ion-exchange filters. in IOP Conference Series: Materials Science and Engineering. 2015. IOP Publishing.

56. Zhang, X., P. Gu, and Y. Liu, Decontamination of radioactive wastewater: State of the art and challenges forward. Chemosphere, 2019. 215: p. 543-553.

57. He, J. and A. Kappler, Recovery of precious metals from waste streams. Microbial biotechnology, 2017. 10(5): p. 1194-1198.

58. da Silva Queiroz, C.A., J.A. Seneda, and W.d.R.P. Filho, Preparation of High Purity Neodymium Oxide from Brazilian Monazite by Ion Exchange. Journal of Energy and Power Engineering, 2015. 9: p. 616-621.

59. Namasivayam, C. and D. Sangeetha, Removal and recovery of vanadium (V) by adsorption onto ZnCl 2 activated carbon: kinetics and isotherms. Adsorption, 2006. 12(2): p. 103-117.

60. Yin, Z., D. Pan, P. Liu, et al., Sorption behavior of thorium (IV) onto activated bentonite. Journal of Radioanalytical and Nuclear Chemistry, 2018. 316(1): p. 301-312.

61. Blanco, S.P.D.M., F.B. Scheufele, A.N. Módenes, et al., Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chemical Engineering Journal, 2017. 307: p. 466-475.

62. Inoue, K., Y. Baba, K. Yoshizuka, et al., Selectivity series in the adsorption of metal-ions on a resin prepared by crosslinking copper(II)-complexed chitosan. Vol. 200. 1988. 1281-1284.

63. Acelas, N.Y., B.D. Martin, D. López, et al., Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 2015. 119: p. 1353-1360.

64. Selambakkannu, S., N.A.F. Othman, K.A. Bakar, et al., Adsorption studies of packed bed column for the removal of dyes using amine functionalized radiation induced grafted fiber. SN Applied Sciences, 2019. 1(2): p. 175.

65. Asnani, C., R.B. Rao, and N. Mandre, A Novel Process for Extraction of Uranium from Monazite of Red Sediment Using Activated Carbon of Waste Tyres Source. Journal of The Institution of Engineers (India): Series D, 2019. 100(1): p. 15-20.

66. Dąbrowski, A., Adsorption—from theory to practice. Advances in colloid and interface science, 2001. 93(1-3): p. 135-224.

67. Xiao, B. and K. Thomas, Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons. Langmuir, 2005. 21(9): p. 3892-3902.

68. Sanguthai, S. and J. Klamtet, Preconcentration and Determination of Cadmium in Natural Water using Amberlite XAD-4/4-(2-Pyridylazo) Resorcinol Resin Prior to Flame Atomic Absorption Spectrometric Detection. Naresuan University Journal: Science and Technology (NUJST), 2015. 23(2): p. 8-20.

69. Hadjittofi, L. and I. Pashalidis, Thorium removal from acidic aqueous solutions by activated biochar derived from cactus fibers. Desalination and water treatment, 2016. 57(57): p. 27864-27868.

70. Madrid, J.F., M. Barsbay, L. Abad, et al., Grafting of N, N-dimethylaminoethyl methacrylate from PE/PP nonwoven fabric via radiation-induced RAFT polymerization and quaternization of the grafts. Radiation Physics and Chemistry, 2016. 124: p. 145-154.

71. Abd El-Magied, M.O., E.A. Elshehy, E.-S.A. Manaa, et al., Kinetics and thermodynamics studies on the recovery of thorium ions using amino resins with magnetic properties. Industrial & Engineering Chemistry Research, 2016. 55(43): p. 11338-11345.

72. Selambakkannu, S., N.A.F. Othman, K.A. Bakar, et al., A kinetic and mechanistic study of adsorptive removal of metal ions by imidazole-functionalized polymer graft banana fiber. Radiation Physics and Chemistry, 2018. 153: p. 58-69.

73. Khullar, R., V.K. Varshney, S. Naithani, et al., Grafting of acrylonitrile onto cellulosic material derived from bamboo (Dendrocalamus strictus). Express Polymer Letters, 2008. 2(1): p. 12-18.

74. Khullar, R., V. Varshney, S. Naithani, et al., Grafting of acrylonitrile onto cellulosic material derived from bamboo (Dendrocalamus strictus). Express Polymer Letters, 2008. 2(1): p. 12-18.

75. Princi, E., S. Vicini, E. Pedemonte, et al., Synthesis and mechanical characterisation of cellulose based textiles grafted with acrylic monomers. European Polymer Journal, 2006. 42(1): p. 51-60.

76. Kontopoulou, M., Advances in Chemically Modified and Functionalized Polymers. Macromolecular Reaction Engineering, 2014. 8(2): p. 67-68.

77. Wulff, G., W. Vesper, R. Grobe ‐ Einsler, et al., Enzyme ‐ analogue built polymers, 4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1977. 178(10): p. 2799-2816.

78. Arshady, R. and K. Mosbach, Synthesis of substrate ‐ selective polymers by host ‐ guest polymerization. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1981. 182(2): p. 687-692.

79. Jiang, Y. and D. Kim, Synthesis and selective adsorption behavior of Pd (II)- imprinted porous polymer particles. Chemical engineering journal, 2013. 232: p. 503-509.

80. Liu, X., H. Chen, C. Wang, et al., Synthesis of porous acrylonitrile/methyl acrylate copolymer beads by suspended emulsion polymerization and their adsorption properties after amidoximation. Journal of hazardous materials, 2010. 175(1-3): p. 1014-1021.

81. Zhao, G., X. Huang, Z. Tang, et al., Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polymer Chemistry, 2018. 9(26): p. 3562-3582.

82. Bhattacharya, A. and B. Misra, Grafting: a versatile means to modify polymers: techniques, factors and applications. Progress in polymer science, 2004. 29(8): p. 767-814.

83. Wojnárovits, L., C.M. Földváry, and E. Takács, Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: A review. Radiation Physics and Chemistry, 2010. 79(8): p. 848-862.

84. Liu, H., D. Kong, W. Sun, et al., Effect of anions on the polymerization and adsorption processes of Cu (II) ion-imprinted polymers. Chemical Engineering Journal, 2016. 303: p. 348-358.

85. Imprinting, S.f.M. MIP Database. 2019 [cited 2019 1 June 2019]; Available from: https://mipdatabase.com/all_items.php.

86. Ahmadi, S.J., O. Noori-Kalkhoran, and S. Shirvani-Arani, Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO22+) ions. Journal of hazardous materials, 2010. 175(1-3): p. 193-197.

87. Shakerian, F., K.-H. Kim, E. Kwon, et al., Advanced polymeric materials: Synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. TrAC Trends in Analytical Chemistry, 2016. 83: p. 55-69.

88. Ye, L., Molecular imprinting: Principles and applications of micro-and nanostructure polymers. 2013: CRC press.

89. Liu, Z., W. Wu, Y. Liu, et al., Preparation of surface anion imprinted polymer by developing a La (III)-coordinated 3-methacryloxyethyl-propyl bi-functionalized graphene oxide for phosphate removal. Journal of the Taiwan Institute of Chemical Engineers, 2018. 85: p. 282-290.

90. Kuras, M.J. and E. Więckowska, Synthesis and characterization of a new copper (II) ion-imprinted polymer. Polymer Bulletin, 2015. 72(12): p. 3227-3240.

91. Rahman, N., N. Sato, S. Yoshioka, et al., Selective Cu (II) adsorption from aqueous solutions including Cu (II), Co (II), and Ni (II) by modified acrylic acid grafted PET film. ISRN Polymer Science, 2013. 2013.

92. Msaadi, R., G. Yilmaz, A. Allushi, et al., Highly Selective Copper Ion Imprinted Clay/Polymer Nanocomposites Prepared by Visible Light Initiated Radical Photopolymerization. Polymers, 2019. 11(2): p. 286.

93. Adhikari, C.R., D. Parajuli, K. Inoue, et al., Pre-concentration and separation of heavy metal ions by chemically modified waste paper gel. Chemosphere, 2008. 72(2): p. 182-188.

94. Zhang, W., M. Yun, Z. Yu, et al., A novel Cu (II) ion-imprinted alginate–chitosan complex adsorbent for selective separation of Cu (II) from aqueous solution. Polymer Bulletin, 2019. 76(4): p. 1861-1876.

95. Suquila, F.A., L.L. de Oliveira, and C.R. Tarley, Restricted access copper imprinted poly (allylthiourea): The role of hydroxyethyl methacrylate (HEMA) and bovine serum albumin (BSA) on the sorptive performance of imprinted polymer. Chemical Engineering Journal, 2018. 350: p. 714-728.

96. Lin, C., H. Wang, Y. Wang, et al., Selective preconcentration of trace thorium from aqueous solutions with Th(IV)-imprinted polymers prepared by a surface- grafted technique. International Journal of Environmental Analytical Chemistry, 2011. 91(11): p. 1050-1061.

97. Xu, J., L. Zhou, Y. Jia, et al., Adsorption of thorium (IV) ions from aqueous solution by magnetic chitosan resins modified with triethylene-tetramine. Journal of Radioanalytical and Nuclear Chemistry, 2015. 303(1): p. 347-356.

98. Liang, H., Q. Chen, J. Ma, et al., Synthesis and characterization of a new ion- imprinted polymer for the selective separation of thorium (iv) ions at high acidity. RSC Advances, 2017. 7(56): p. 35394-35402.

99. Khalili, F.I., N.a.H. Salameh, and M.M. Shaybe, Sorption of uranium (VI) and thorium (IV) by Jordanian bentonite. Journal of Chemistry, 2012. 2013.

100. Büyüktiryaki, S., R. Say, A. Ersöz, et al., Selective preconcentration of thorium in the presence of UO22+, Ce3+ and La3+ using Th (IV)-imprinted polymer. Talanta, 2005. 67(3): p. 640-645.

101. He, F.F., H.Q. Wang, Y.Y. Wang, et al., Magnetic Th(IV)-ion imprinted polymers with salophen schiff base for separation and recognition of Th(IV). Journal of Radioanalytical and Nuclear Chemistry, 2013. 295(1): p. 167-177.

102. Xiong, J., S. Hu, Y. Liu, et al., Polypropylene modified with amidoxime/carboxyl groups in separating uranium (VI) from thorium (IV) in aqueous solutions. ACS Sustainable Chemistry & Engineering, 2017. 5(2): p. 1924-1930.

103. Bicim, T. and M. Yaman, Sensitive determination of uranium in natural waters using UV-Vis spectrometry after preconcentration by ion-imprinted polymer- ternary complexes. Journal of AOAC International, 2016. 99(4): p. 1043-1048.

104. Anirudhan, T.S., J. Nima, and P.L. Divya, Adsorption and separation behavior of uranium (VI) by 4-vinylpyridine-grafted-vinyltriethoxysilane-cellulose ion imprinted polymer. Journal of Environmental Chemical Engineering, 2015. 3(2): p. 1267-1276.

105. Mishima, K., X. Du, N. Miyamoto, et al., Experimental and theoretical studies on the adsorption mechanisms of uranium (VI) ions on chitosan. Journal of functional biomaterials, 2018. 9(3): p. 49.

106. Zhang, L., S. Yang, J. Qian, et al., Surface ion-imprinted polypropylene nonwoven fabric for potential uranium seawater extraction with high selectivity over vanadium. Industrial & Engineering Chemistry Research, 2017. 56(7): p. 1860- 1867.

107. Cleland, M.R., L.A. Parks, and S. Cheng, Applications for radiation processing of materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003. 208(0): p. 66-73.

108. Clough, R.L., High-energy radiation and polymers: A review of commercial processes and emerging applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001. 185(1–4): p. 8-33.

109. Meister, J., Polymer modification: principles, techniques, and applications. Vol. 60. 2000: CRC Press.

110. Kerluke, D.R. and S. Cheng, Radiation Processing of Polymers: The Current Status and Prospects for the Future. ANTEC 2004 Plastics: Annual Technical Conference, Volume 3: Special Areas, 2004: p. p. 3738-3739.

111. Mansoori, G.A., T.F. George, L. Assoufid, et al., Molecular Building Blocks for Nanotechnology: From Diamondoids to Nanoscale Materials and Applications. 2007: Springer.

112. Drobny, J.G., Modification of Polymers by Ionizing Radiation: A review. ANTEC 2006 Plastics: Annual Technical Conference Proceedings, 2006: p. 2465-2469.

113. Chmielewski, A.G., M. Haji-Saeid, and S. Ahmed, Progress in radiation processing of polymers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005. 236(1): p. 44-54.

114. Dole, M., The radiation chemistry of macromolecules. Vol. 1. 2012: Elsevier.

115. Bhardwaj, Y., M. Tamada, M. Nasef, et al., HARMONIZED PROTOCOL for RADIATION-INDUCED GRAFTING.

116. Rouquerol, J., F. Rouquerol, P. Llewellyn, et al., Adsorption by powders and porous solids: principles, methodology and applications. 2013: Academic press.

117. Freundlich, H., Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 1907. 57(1): p. 385-470.

118. Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 1918. 40(9): p. 1361-1403.

119. Brunauer, S. and P.H. Emmett, The use of low temperature van der Waals adsorption isotherms in determining the surface areas of various adsorbents. Journal of the American Chemical Society, 1937. 59(12): p. 2682-2689.

120. Brunauer, S., P.H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers. Journal of the American chemical society, 1938. 60(2): p. 309-319.

121. Kreuzer, H.J. and Z.W. Gortel, Physisorption kinetics. Vol. 1. 2012: Springer Science & Business Media.

122. Ranganathan, S., Selected Topics in Chemistry. 2015: Lulu. com.

123. Kipling, J.J., Adsorption from Solutions of Non-electrolytes. 2017: Academic Press.

124. Igwe, J.C. and A.A. Abia, Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA- modified maize cob. Eclética Química, 2007. 32(1): p. 33-42.

125. Brannon-Peppas, L. and R.S. Harland, Absorbent polymer technology. Vol. 8. 2012: Elsevier.

126. Ma, H., S. Yao, J. Li, et al., A mild method of amine-type adsorbents syntheses with emulsion graft polymerization of glycidyl methacrylate on polyethylene non- woven fabric by pre-irradiation. Radiation Physics and Chemistry, 2012. 81(9): p. 1393-1397.

127. Hoshina, H., N. Seko, Y. Ueki, et al., Synthesis of graft adsorbent with N-methyl- D-glucamine for boron adsorption. 日本イオン交換学会誌, 2007. 18(4): p. 236-239.

128. Reyna, J., M.C. García-López, N. Pérez-Rodríguez, et al., Polystyrene degraded and functionalized with acrylamide for removal of Pb (II) metal ions. Polymer Bulletin, 2018: p. 1-20.

129. Liu, C., R. Bai, and Q. San Ly, Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms. Water Research, 2008. 42(6-7): p. 1511-1522.

130. Paredes, B., S. González, M. Rendueles, et al., Influence of the amination conditions on the textural properties and chromatographic behaviour of amino- functionalized glycidyl methacrylate-based particulate supports. Acta materialia, 2003. 51(20): p. 6189-6198.

131. Liu, C. and R. Bai, Extended study of DETA-functionalized PGMA adsorbent in the selective adsorption behaviors and mechanisms for heavy metal ions of Cu, Co, Ni, Zn, and Cd. Journal of colloid and interface science, 2010. 350(1): p. 282- 289.

132. Goel, N., M. Rao, V. Kumar, et al., Synthesis of antibacterial cotton fabric by radiation-induced grafting of [2-(Methacryloyloxy) ethyl] trimethylammonium chloride (MAETC) onto cotton. Radiation Physics and Chemistry, 2009. 78(6): p. 399-406.

133. Sekine, A., N. Seko, M. Tamada, et al., Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric. Radiation Physics and Chemistry, 2010. 79(1): p. 16-21.

134. Goel, N., V. Kumar, S. Pahan, et al., Development of adsorbent from Teflon waste by radiation induced grafting: Equilibrium and kinetic adsorption of dyes. Journal of hazardous materials, 2011. 193: p. 17-26.

135. Salih, S., Fourier Transform: Materials Analysis. 2012: BoD–Books on Demand.

136. Ravel, B. and M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 2005. 12(4): p. 537-541.

137. Princi, E., S. Vicini, N. Proietti, et al., Grafting polymerization on cellulose based textiles: a 13C solid state NMR characterization. European Polymer Journal, 2005. 41(6): p. 1196-1203.

138. Sehgal, T. and S. Rattan, Graft-copolymerization of N-vinyl-2-pyrrolidone onto isotactic polypropylene film by gamma radiation using peroxidation method. 2010.

139. Dilli, S., J. Garnett, E. Martin, et al. The role of additives in the radiation induced copolymerization of monomers to cellulose. in Journal of Polymer Science Part C: Polymer Symposia. 1972. Wiley Online Library.

140. Jimeno, A., S. Goyanes, A. Eceiza, et al., Effects of amine molecular structure on carbon nanotubes functionalization. Journal of nanoscience and nanotechnology, 2009. 9(10): p. 6222-6227.

141. Kimmins, S.D., P. Wyman, and N.R. Cameron, Amine-functionalization of glycidyl methacrylate-containing emulsion-templated porous polymers and immobilization of proteinase K for biocatalysis. Polymer, 2014. 55(1): p. 416-425.

142. Madrid, J.F., G.M. Nuesca, and L.V. Abad, Amine functionalized radiation- induced grafted water hyacinth fibers for Pb 2+, Cu 2+ and Cr 3+ uptake. Radiation Physics and Chemistry, 2014. 97: p. 246-252.

143. Sarala* Selambakkannu, N.A.F.O., Siti Fatahiyah Mohamad, Khomsaton Abu Bakar, Hamdani Saidi, Functionalization of Gma-Grafted Banana Fibers With Ethylenediamne For Metal Ion Adsorption. Advances in Environmental Biology, 2015. 9(13).

144. Petrovich, J., FTIR and DSC of polymer films used for packaging: LLDPE, PP and PVDC. SHAPE American High School, 2015.

145. Sharif, J., S.F. Mohamad, N.A.F. Othman, et al., Graft copolymerization of glycidyl methacrylate onto delignified kenaf fibers through pre-irradiation technique. Radiation Physics and Chemistry, 2013. 91: p. 125-131.

146. Casarin, J., A.C.G. Junior, M.G. Segatelli, et al., Insight into the performance of molecularly imprinted poly (methacrylic acid) and polyvinylimidazole for extraction of imazethapyr in aqueous medium. Chemical Engineering Journal, 2018. 343: p. 583-596.

147. Meylheuc, T., C. Methivier, M. Renault, et al., Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Colloids and Surfaces B: Biointerfaces, 2006. 52(2): p. 128-137.

148. Kamra, T., S. Chaudhary, C. Xu, et al., Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing. Journal of colloid and interface science, 2016. 461: p. 1-8.

149. Borghi, E., P.L. Solari, M. Beltramini, et al., Oxidized derivatives of octopus vulgaris and carcinus aestuarii hemocyanins at pH 7.5 and related models by X- ray absorption spectroscopy. Biophysical journal, 2002. 82(6): p. 3254-3268.

150. Yano, J., Y. Pushkar, P. Glatzel, et al., High-resolution Mn EXAFS of the oxygen- evolving complex in photosystem II: structural implications for the Mn4Ca cluster. Journal of the American Chemical Society, 2005. 127(43): p. 14974-14975.

151. Gaur, A., B. Shrivastava, D. Gaur, et al., EXAFS study of binuclear hydroxo- bridged copper (II) complexes. Journal of coordination Chemistry, 2011. 64(7): p. 1265-1275.

152. Gaur, A., B. Shrivastava, K. Srivastava, et al., XAFS investigations of copper (II) complexes with tetradentate Schiff base ligands. X‐Ray Spectrometry, 2012. 41(6): p. 384-392.

153. Wang, F., Y. Pan, P. Cai, et al., Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresource technology, 2017. 241: p. 482-490.

154. Bajpai, S.K. and A. Jain, Removal of copper (II) from aqueous solution using spent tea leaves (STL) as a potential sorbent. SA Journal of Radiology, 2010. 36(3).

155. Erdem, Ö., Y. Saylan, M. Andaç, et al., Molecularly imprinted polymers for removal of metal ions: an alternative treatment method. Biomimetics, 2018. 3(4): p. 38.

156. Ma, H., K. Morita, H. Hoshina, et al., Synthesis of amine-type adsorbents with emulsion graft polymerization of 4-hydroxybutyl acrylate glycidylether. Materials Sciences and Applications, 2011. 2(07): p. 776.

157. Niu, Y., K. Li, D. Ying, et al., Novel recyclable adsorbent for the removal of copper (II) and lead (II) from aqueous solution. Bioresource technology, 2017. 229: p. 63-68.

158. Park, S.-J. and M.-K. Seo, Interface science and composites. Vol. 18. 2011: Academic Press.

159. Bindu, M. and B. Mathew, DESIGN OF COPPER ION SELECTIVE POLYMERS BY MOLECULAR IMPRINTING APPROACH.

160. Kockler, K.B., F. Fleischhaker, and C. Barner-Kowollik, Free Radical Propagation Rate Coefficients of N-Containing Methacrylates: Are We Family? Macromolecules, 2016. 49(22): p. 8572-8580.

161. Kong, Z., X. Wu, J. Wei, et al., Preparation and characterization of hydrophilicity fibers based on 2-(dimethyamino) ethyl mathacrylate grafted polypropylene by UV-irradiation for removal of Cr (VI) and as (V). Journal of Polymer Research, 2016. 23(9): p. 199.

162. Saito, K., K. Fujiwara, and T. Sugo, Revolution in the Form of Polymeric Adsorbents 2: Fibers, Films, and Particles, in Innovative Polymeric Adsorbents. 2018, Springer. p. 109-143.

163. Nasser, I.I., C. Algieri, A. Garofalo, et al., Hybrid imprinted membranes for selective recognition of quercetin. Separation and Purification Technology, 2016. 163: p. 331-340.

164. Ibrahim, M.M., C. Sipaut, and N.M. Yusof, Purification of vanillin by a molecular imprinting polymer technique. Separation and Purification Technology, 2009. 66(3): p. 450-456.

165. Chen, L., X. Wang, W. Lu, et al., Molecular imprinting: perspectives and applications. Chemical Society Reviews, 2016. 45(8): p. 2137-2211.

166. Nasef, M.M. and I.A. Sugiarmawan, Radiation induced emulsion grafting of glycidyl methacrylate onto high density polyethylene: a kinetic study. Malaysian Journal of Fundamental and Applied Sciences, 2010. 6(2).

167. Taghizadeh, M.T. and M. Khosravy, Kinetics and mechanism of graft copolymerization of vinyl monomers (acrylamide, acrylic acid, and methacrylate) onto starch by potassium dichromate as redox initiator. Iranian Polymer Journal, 2003. 12(6): p. 497-505.

168. Singha, A.S. and A.K. Rana, Kinetics of Graft Copolymerization of Acrylic Acid Ontocannabis Indica Fibre. 2011.

169. Sun, Y. and A.G. Chmielewski, Applications of Ionizing Radiation in Materials Processing. 2017: Institute of Nuclear Chemistry and Technology.

170. Burillo, G., J. Serrano-Gómez, and J. Bonifacio-Martínez, Adsorption of chromium (VI) on radiation grafted N, N-dimethylaminoethylmethacrylate onto polypropylene, from aqueous solutions. Journal of the Mexican Chemical Society, 2013. 57(2): p. 80-84.

171. Li, J., W.D. He, S.c. Han, et al., Synthesis and micellization of PSt‐PNIPAM‐ PDMAEMA hetero ‐ arm star polymer with double thermo ‐ responsibility. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(3): p. 786-796.

172. Ranogajec, F., Kinetic and structural factors in graft polymerization of styrene on polyolefins. Polimeri: časopis za plastiku i gumu, 2009. 29(4): p. 217-227.

173. Kornacka, E.M., G. Przybytniak, and K. Mirkowski, Selection of polymer matrices for radiation grafting. Prof. Jacek Michalik, Ph. D., D. Sc. Wiktor Smułek, Ph. D., 2009: p. 38.

174. Rahmatpour, A., N. Goodarzi, and M. Moazzez, A novel route for synthesis of cross-linked polystyrene copolymer beads with tunable porosity using guar and xanthan gums from bioresources as alternative synthetic suspension stabilizers. Designed monomers and polymers, 2018. 21(1): p. 116-129.

175. Shoravi, S., G. Olsson, B. Karlsson, et al., On the Influence of crosslinker on template complexation in molecularly imprinted polymers: a computational study of prepolymerization mixture events with correlations to template-polymer recognition behavior and NMR spectroscopic studies. International journal of molecular sciences, 2014. 15(6): p. 10622-10634.

176. Sibrian-Vazquez, M. and D.A. Spivak, Enhanced enantioselectivity of molecularly imprinted polymers formulated with novel cross-linking monomers. Macromolecules, 2003. 36(14): p. 5105-5113.

177. Haupt, K., Molecular imprinting. Vol. 325. 2012: Springer Science & Business Media.

178. Pereira, E., C. Caceres, F. Rivera, et al., Preparation of molecularly imprinted polymers for diphenylamine removal from organic gunshot residues. Journal of the Chilean Chemical Society, 2014. 59(4): p. 2731-2736.

179. Sokker, H., A.A. Ghaffar, Y. Gad, et al., Synthesis and characterization of hydrogels based on grafted chitosan for the controlled drug release. Carbohydrate polymers, 2009. 75(2): p. 222-229.

180. Walo, M., Radiation-induced grafting, in Applications of ionizing radiation in materials processing. 2017. p. 193-210.

181. Przybytniak, G., Crosslinking of Polymers in Radiation Processing. Applications of ionizing radiation in materials processing, 2017: p. 249-267.

182. Madrid, J.F., G.M. Nuesca, and L.V. Abad, Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers. Radiation Physics and Chemistry, 2013. 85: p. 182-188.

183. Kodama, Y., M. Barsbay, and O. Güven, Poly (2-hydroxyethyl methacrylate)(PHEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fabric by γ-initiation: Synthesis, characterization and benefits of RAFT mediation. Radiation Physics and Chemistry, 2014. 105: p. 31-38.

184. Barsbay, M. and O. Güven, RAFT mediated grafting of poly (acrylic acid)(PAA) from polyethylene/polypropylene (PE/PP) nonwoven fabric via preirradiation. Polymer, 2013. 54(18): p. 4838-4848.

185. Hayashi, N., J. Chen, and N. Seko, Nitrogen-Containing Fabric Adsorbents Prepared by Radiation Grafting for Removal of Chromium from Wastewater. Polymers, 2018. 10(7): p. 744.

186. Othman, N.A.F., S. Selambakkannu, T.M. Ting, et al., Integration of phosphoric acid onto radiation grafted poly (2, 3-epoxypropyl methacrylate)-PP/PE non-woven fabrics aimed copper adsorbent via response surface method. Journal of Polymer Research, 2019. 26(12): p. 283.

187. Flora, S.J. and V. Pachauri, Chelation in metal intoxication. International journal of environmental research and public health, 2010. 7(7): p. 2745-2788.

188. Flora, G., M. Mittal, and S.J. Flora, Medical Countermeasures—Chelation Therapy, in Handbook of Arsenic Toxicology. 2015, Elsevier. p. 589-626.

189. Alsharaeh, E., A. Othman, and M. Aldosari, Microwave irradiation effect on the dispersion and thermal stability of RGO nanosheets within a polystyrene matrix. Materials, 2014. 7(7): p. 5212-5224.

190. Nurhayati, T. and I. Royani. Synthesis and characterization of MAA-based molecularly-imprinted polymer (MIP) with D-glucose template. in Journal of Physics: Conference Series. 2016. IOP Publishing.

191. Duan, G., Q. Zhong, L. Bi, et al., The Poly (acrylonitrule-co-acrylic acid)-graft- β-cyclodextrin Hydrogel for Thorium (IV) Adsorption. Polymers, 2017. 9(6): p. 201.

192. Jin, C., J. Hu, J. Wang, et al., An Amidoximated-UHMEPE Fiber for Selective and High Efficient Removal of Uranyl and Thorium from Acid Aqueous Solution. 2017.

193. Mittal, A., R. Ahmad, and I. Hasan, Poly (methyl methacrylate)-grafted alginate/Fe3O4 nanocomposite: synthesis and its application for the removal of heavy metal ions. Desalination and Water Treatment, 2016. 57(42): p. 19820- 19833.

194. Soetaredjo, F.E., S. Ismadji, K. Foe, et al., Recent advances in the application of polymer-based nanocomposites for removal of hazardous substances from water and wastewater, in New Polymer Nanocomposites for Environmental Remediation. 2018, Elsevier. p. 499-540.

195. Chen, M., Z. Li, Y. Geng, et al., Adsorption behavior of thorium on N, N, N′, N′-tetraoctyldiglycolamide (TODGA) impregnated graphene aerogel. Talanta, 2018. 181: p. 311-317.

196. Gado, M., Sorption of Thorium Using Magnetic Graphene Oxide Polypyrrole Composite Synthesized from Water Hyacinth Roots. Iran. J. Chem. Chem. Eng. Research Article Vol, 2018. 37(3).

197. Anderson, M.J. and P.J. Whitcomb, RSM simplified: optimizing processes using response surface methods for design of experiments. 2016: Productivity press.

198. Kumar, A., B. Prasad, and I. Mishra, Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box–Behnken design. Journal of Hazardous Materials, 2008. 150(1): p. 174-182.

199. Christodoulakis, K. and M. Vamvakaki. pH ‐ Responsive Microgel Particles Comprising Solely Basic or Acidic Residues. in Macromolecular symposia. 2010. Wiley Online Library.

200. Bütün, V., S. Armes, and N. Billingham, Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer, 2001. 42(14): p. 5993-6008.

201. Ekberg, C., Y. Albinsson, M.J. Comarmond, et al., Studies on the complexation behavior of thorium (IV). 1. Hydrolysis equilibria. Journal of Solution Chemistry, 2000. 29(1): p. 63-86.

202. Bhardwaj, Y., M. Tamada, Y.-C. Nho, et al., Harmonized Protocol for Radiation- Induced Grafting, in Workshop on Harmonized Radiation Graft Protocol. 2014.

203. Mondal, P., C. Majumder, and B. Mohanty, Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. Journal of Hazardous Materials, 2008. 150(3): p. 695-702.

204. Chen, X., Modeling of experimental adsorption isotherm data. Information, 2015. 6(1): p. 14-22.

205. Ayawei, N., A.N. Ebelegi, and D. Wankasi, Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017. 2017.

206. Yaneva, Z.L., B.K. Koumanova, and N.V. Georgieva, Linear and nonlinear regression methods for equilibrium modelling of p-nitrophenol biosorption by Rhizopus oryzae: Comparison of error analysis criteria. Journal of Chemistry, 2012. 2013.

207. Meroufel, B., O. Benali, M. Benyahia, et al., Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies. J. Mater. Environ. Sci, 2013. 4(3): p. 482-491.

208. Ogunmodede, O., A. Ojo, E. Adewole, et al., Adsorptive removal of anionic dye from aqueous solutions by mixture of Kaolin and Bentonite clay: Characteristics, isotherm, kinetic and thermodynamic studies. Iranica Journal of Energy & Environment, 2015. 6(2): p. 147-153.

209. Ahmad, R. and R. Kumar, Adsorption studies of hazardous malachite green onto treated ginger waste. Journal of environmental management, 2010. 91(4): p. 1032-1038.

210. Lima, E.C., A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, et al., A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of Molecular Liquids, 2019. 273: p. 425-434.

211. Afroze, S., T.K. Sen, and H.M. Ang, Adsorption removal of zinc (II) from aqueous phase by raw and base modified Eucalyptus sheathiana bark: Kinetics, mechanism and equilibrium study. Process Safety and Environmental Protection, 2016. 102: p. 336-352.

212. Chiou, M. and H. Li, Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 2003. 50(8): p. 1095-1105.

213. Semerjian, L., Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinus halepensis sawdust. Journal of hazardous materials, 2010. 173(1): p. 236-242.

214. Lagergren, S., Kungliga svenska vetenskapsakademiens. Handlingar, 1898. 24(4): p. 1-39.

215. Ho, Y.-S. and G. McKay, Pseudo-second order model for sorption processes. Process biochemistry, 1999. 34(5): p. 451-465.

216. Ho, Y. and G. McKay, Kinetic model for lead (II) sorption on to peat. Adsorption science & technology, 1998. 16(4): p. 243-255.

217. Zhang, C., J. Su, H. Zhu, et al., The removal of heavy metal ions from aqueous solutions by amine functionalized cellulose pretreated with microwave-H 2 O 2. RSC Advances, 2017. 7(54): p. 34182-34191.

218. Myers, R.H., D.C. Montgomery, and C. Anderson-Cook, Process and product optimization using designed experiments. Response surface methodology, 2002: p. 328-335.

219. Keshtkar, A.R. and M.A. Mousavian, Application of response surface methodology for thorium (IV) removal using Amberlite IR-120 and IRA-400: Ion exchange equilibrium and kinetics. Journal of Particle Science & Technology, 2017. 3(2): p. 101-112.

220. Taleb, M.F.A., G.A. Mahmoud, S.M. Elsigeny, et al., Adsorption and desorption of phosphate and nitrate ions using quaternary (polypropylene-gN, N- dimethylamino ethylmethacrylate) graft copolymer. Journal of Hazardous Materials, 2008. 159(2-3): p. 372-379.

221. Kavaklı, C., P.A. Kavaklı, B.D. Turan, et al., Quaternized dimethylaminoethyl methacrylate strong base anion exchange fibers for As (V) adsorption. Radiation Physics and Chemistry, 2014. 102: p. 84-95.

222. Zhao, L., J. Sun, Y. Zhao, et al., Removal of hazardous metal ions from wastewater by radiation synthesized silica-graft-dimethylaminoethyl methacrylate adsorbent. Chemical engineering journal, 2011. 170(1): p. 162-169.

223. Li, C., Y. Zhang, J. Peng, et al., Adsorption of Cr (VI) using cellulose microsphere-based adsorbent prepared by radiation-induced grafting. Radiation Physics and Chemistry, 2012. 81(8): p. 967-970.

224. Bindu, M. and B. Mathew, Design of Copper Ion Selective Polymers by Molecular Imprinting Approach. International Journal of Latest Research in Science and Technology, 2015. 4(2): p. 154-160.

225. Ting, T., M.M. Nasef, and K. Hashim, Tuning N-methyl-D-glucamine density in a new radiation grafted poly (vinyl benzyl chloride)/nylon-6 fibrous boron- selective adsorbent using the response surface method. RSC Advances, 2015. 5(47): p. 37869-37880.

226. Xu, L., Y.-A. Huang, Q.-J. Zhu, et al., Chitosan in molecularly-imprinted polymers: Current and future prospects. International journal of molecular sciences, 2015. 16(8): p. 18328-18347.

227. Thuéry, P., Solid state structure of thorium (IV) complexes with common aminopolycarboxylate ligands. Inorganic chemistry, 2011. 50(5): p. 1898-1904.

228. Comba, P., Metal ion selectivity and molecular modeling. Coordination chemistry reviews, 1999. 185: p. 81-98.

229. He, Q., X. Chang, Q. Wu, et al., Synthesis and applications of surface-grafted Th(IV)-imprinted polymers for selective solid-phase extraction of thorium(IV). Analytica Chimica Acta, 2007. 605(2): p. 192-197.

230. Lin, C., H. Wang, Y. Wang, et al., Selective solid-phase extraction of trace thorium(IV) using surface-grafted Th(IV)-imprinted polymers with pyrazole derivative. Talanta, 2010. 81(1-2): p. 30-36.

231. Cheng, Z., H. Wang, Y. Wang, et al., Synthesis and characterization of an ion- imprinted polymer for selective solid phase extraction of thorium(IV). Microchim Acta, 2011. 173: p. 423-431.

232. Ji, X.Z., H.J. Liu, L.L. Wang, et al., Study on adsorption of Th(IV) using surface modified dibenzoylmethane molecular imprinted polymer. Journal of Radioanalytical and Nuclear Chemistry, 2013. 295: p. 265-270.

233. He, F.F., H.Q. Wang, Y.Y. Wang, et al., Magnetic Th(IV)-ion imprinted polymers with salophen schiff base for separation and recognition of Th(IV). Journal of Radioanalytical and Nuclear Chemistry, 2013. 295: p. 167-177.

234. Huang, D.-L., R.-Z. Wang, Y.-G. Liu, et al., Application of molecularly imprinted polymers in wastewater treatment: a review. Environmental Science and Pollution Research, 2015. 22(2): p. 963-977.

235. Masoumi, F., P. Sarabadani, and A.R. Khorrami, Synthesis, characterization and application of a new nano-structured samarium (III) ion-imprinted polymer. Polymer Bulletin, 2019: p. 1-18.

236. Gomes, A., L. Costa, D. Brito, et al., Development of a new ion-imprinted polymer (IIP) with Cd 2+ ions based on divinylbenzene copolymers containing amidoxime groups. Polymer Bulletin, 2019: p. 1-13.

237. Kutner, W. and P.S. Sharma, Molecularly imprinted polymers for analytical chemistry applications. Vol. 28. 2018: Royal Society of Chemistry.

238. Muhammad, T., Z. Nur, E.V. Piletska, et al., Rational design of molecularly imprinted polymer: the choice of cross-linker. Analyst, 2012. 137(11): p. 2623- 2628.

239. Laatikainen, K., C. Branger, B. Coulomb, et al., In situ complexation versus complex isolation in synthesis of ion imprinted polymers. Reactive and Functional Polymers, 2018. 122: p. 1-8.

240. Nasef, M.M., M. Tamada, N. Seko, et al., Advances in the development of functional polymers using radiation induced emulsion polymerization. Recent Res Dev Polym Sci, 2014. 12: p. 107-128.

241. Seko, N., N.T.Y. Ninh, and M. Tamada, Emulsion grafting of glycidyl methacrylate onto polyethylene fiber. Radiation Physics and Chemistry, 2010. 79(1): p. 22-26.

242. Mohamed, N.H., M. Tamada, Y. Ueki, et al., Emulsion graft polymerization of 4- chloromethylstyrene on kenaf fiber by pre-irradiation method. Radiation Physics and Chemistry, 2013. 82: p. 63-68.

243. Eliseeva, V.I., S. Ivanchev, S. Kuchanov, et al., Emulsion polymerization and its applications in industry. 2012: Springer Science & Business Media.

244. McClements, D.J., Food emulsions: principles, practices, and techniques. 2015: CRC press.

245. Rañada, M.L., M. Akbulut, L. Abad, et al., Molecularly imprinted poly (N-vinyl imidazole) based polymers grafted onto nonwoven fabrics for recognition/removal of phloretic acid. Radiation Physics and Chemistry, 2014. 94: p. 93-97.

246. Mafu, L.D., B.B. Mamba, and T.A. Msagati, Synthesis and characterization of ion imprinted polymeric adsorbents for the selective recognition and removal of arsenic and selenium in wastewater samples. Journal of Saudi Chemical Society, 2016. 20(5): p. 594-605.

247. Fan, H.-T., X.-T. Sun, Z.-G. Zhang, et al., Selective removal of lead (II) from aqueous solution by an ion-imprinted silica sorbent functionalized with chelating N-donor atoms. Journal of Chemical & Engineering Data, 2014. 59(6): p. 2106- 2114.

248. Compton, R., C. Bamford, and C. Tipper, Degradation of polymers. Vol. 14. 1975: Elsevier.

249. Rosiak, J.M., Gel/sol analysis of irradiated polymers. Radiation Physics and Chemistry, 1998. 51(1): p. 13-17.

250. Kaur, I., N. Sharma, and V. Kumari, Modification of fiber properties through grafting of acrylonitrile to rayon by chemical and radiation methods. Journal of advanced research, 2013. 4(6): p. 547-557.

251. Tamada, M., Radiation processing of polymers and its applications, in Radiation Applications. 2018, Springer. p. 63-80.

252. Chang, J.H., H. Lee, S. Jang, et al., Facile preparation of size-controlled mesoporous silica particles by metal-chelating surfactant micelle complexes. Materials Letters, 2016. 173: p. 50-54.

253. Flores-Rojas, G. and E. Bucio, Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber. Radiation Physics and Chemistry, 2016. 127: p. 21-26.

254. Chapiro, A., Chemical modifications in irradiated polymers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1988. 32(1-4): p. 111-114.

255. Chandler ‐ Temple, A., E. Wentrup ‐ Byrne, A.K. Whittaker, et al., Graft copolymerization of methoxyacrylethyl phosphate onto expanded poly (tetrafluoroethylene) facial membranes. Journal of applied polymer science, 2010. 117(6): p. 3331-3339.

256. Tissot, C., Radiation-grafted fabrics for the extraction of uranium from seawater. 2014.

257. Wentrup-Byrne, E., S. Suzuki, J.J. Suwanasilp, et al., Novel phosphate-grafted ePTFE copolymers for optimum in vitro mineralization. Biomedical Materials, 2010. 5(4): p. 045010.

258. Li, J. and A.R. Barron, Fourier transform infrared spectroscopy of metal ligand complexes. 2010.

259. Pan, N., L. Li, J. Ding, et al., A Schiff base/quaternary ammonium salt bifunctional graphene oxide as an efficient adsorbent for removal of Th (IV)/U (VI). Journal of colloid and interface science, 2017. 508: p. 303-312.

260. Vasapollo, G., R.D. Sole, L. Mergola, et al., Molecularly imprinted polymers: present and future prospective. International journal of molecular sciences, 2011. 12(9): p. 5908-5945.

261. Söylemez, M.A., Z. Ateş, and O. Güven, Radiation induced synthesis of molecularly imprinted polymers.

262. Lee, J.-Y., C.-H. Chen, S. Cheng, et al., Adsorption of Pb (II) and Cu (II) metal ions on functionalized large-pore mesoporous silica. International journal of environmental science and technology, 2016. 13(1): p. 65-76.

263. Chi, Z., H. Huang, Y. Yin, et al., SELECTIVE RECYCLE OF Cd (0) BASED ON pH/T SWITCH-ABLE CONTROLLED Cd (II) ADSORPTION ON ION- IMPRINTED POLYMER. FEB-FRESENIUS ENVIRONMENTAL BULLETIN, 2019: p. 7449.

264. Shafizadeh, F., M. Taghizadeh, and S. Hassanpour, Preparation of a novel magnetic Pd (II) ion-imprinted polymer for the fast and selective adsorption of palladium ions from aqueous solutions. Environmental Science and Pollution Research, 2019: p. 1-16.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る