リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hemodynamic Analysis of a Microanastomosis Using Computational Fluid Dynamics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hemodynamic Analysis of a Microanastomosis Using Computational Fluid Dynamics

Yagi, Shunjiro Sasaki, Takafumi Fukuhara, Takahiro Fujii, Kaori Morita, Maki Suyama, Yoshiko Fukuoka, Kohei Nishino, Teruyasu Hisatome, Ichiro 鳥取大学 DOI:10.33160/yam.2020.11.013

2020.11.24

概要

[Background] Technical issues in free flap transfer, such as the selection of recipient vessels and the positioning and method of anastomosis of the vascular pedicle, have been the subject of vigorous debate. Recent developments in computational fluid dynamics (CFD) have enabled the analysis of blood flow within microvessels. In this study, CFD was used to analyze hemodynamics in a microanastomosis. [Methods] In the fluid calculation process, the fluid domain modelizes microvessels with anastomosis. The inlet flow conditions were measured as venous waveform, and the fluid is simulated as blood. Streamlines (SL), wall shear stress (WSS), and oscillatory shear index (OSI) at the anastomosis were visualized and analyzed for observing effects from the flow field. [Results] Some flow disruption was evident as the SL passed over the sutures. The maximum recorded WSS was 13.37 Pa where the peak of a suture was exposed in the lumen. The local maximum value of the OSI was 0.182, recorded at the base of the anastomosis on the outflow side. [Conclusion] In the ideal anastomosis, the SL is disrupted as little as possible by the sutures. The WSS indicated that thrombus formation is unlikely to occur at suture peaks, but more likely to occur at the base of sutures, where the OSI is high. Tight suture knots are important in microanastomosis.

この論文で使われている画像

参考文献

1 Yagi S, Kamei Y, Torii S. Donor side selection in mandibular reconstruction using a free fibular osteocutaneous

f lap. Ann Plast Surg. 2006;56:622-7. DOI: 10.1097/01.

sap.0000205776.18090.9b, PMID: 16721074

2 Yagi S, Kamei Y, Nakayama B, Toriyama K, Torii S. A new

design for free flap reconstruction of the tongue and oropharynx. J Reconstr Microsurg. 2008;24:211-9. DOI: 10.1055/

s-2008-1078691, PMID: 18491260

3 Yagi S, Suyama Y, Fukuoka K, Takeuchi H, Kitano H.

Recipient Vessel Selection in Head and Neck Reconstruction

Based on the Type of Neck Dissection. Yonago Acta Med.

2016;59:159-62. PMID: 27493487

4 Kamei Y, Nakayama B, Toriyama K, Hyodo I, Yagi S,

Sugiura H, et al. Combined fibular osteocutaneous and

omental flaps. Plast Reconstr Surg. 2007;119:1499-504. DOI:

10.1097/01.prs.0000256065.62382.89, PMID: 17415244

5 Ducic I, Brown BJ, Rao SS. Lower extremity free f lap

reconstruction outcomes using venous coupler. Microsurgery.

2011;31:360-4. DOI: 10.1002/micr.20888, PMID: 21630333

6 Ryan AD, Goldberg I, OʼBrien, MacLeod AM. Anastomosis of vessels of unequal diameter using an interpositional vein graft. Plast Reconstr Surg. 1988;81:414-7. DOI:

10.1097/00006534-198803000-00018, PMID: 3340676

311

© 2020 Tottori University Medical Press

S. Yagi et al.

7 Takanari K, Kamei Y, Toriyama K, Yagi S, Torii S. Differences in blood flow volume and vascular resistance between

free flaps: assessment in 58 cases. J Reconstr Microsurg.

2009;25:039-045. DOI: 10.1055/s-0028-1090607, PMID:

18942044

8 Itatani K, Miyaji K, Qian Y, Liu JL, Miyakoshi T, Murakami

A, et al. Influence of surgical arch reconstruction methods

on single ventricle workload in the Norwood procedure.

J Thorac Cardiovasc Surg. 2012;144:130-8. DOI: 10.1016/

j.jtcvs.2011.08.013, PMID: 21907359

9 Miyazaki S, Miyaji K, Itatani K, Oka N, Goto S, Nakamura

M, et al. Surgical strategy for aortic arch reconstruction after

the Norwood procedure based on numerical flow analysis. Interact Cardiovasc Thorac Surg. 2018;26:460-7. DOI: 10.1093/

icvts/ivx332, PMID: 29049796

10 Misaki K, Takao H, Suzuki T, Nishimura K, Kan I, Yuki I, et

al. Estimated pretreatment hemodynamic prognostic factors

of aneurysm recurrence after endovascular embolization.

Technol Health Care. 2018;25:843-50. DOI: 10.3233/THC160495, PMID: 29103056

11 Yoshiki K, Misaki K, Nambu I, Fukui I, Mohri M, Uchiyama

N, et al. Intraoperative rupture of unruputured cerebral aneurysm during craniotomy: A case report. Case Rep Neurol.

2017;9:261-6. DOI: 10.1159/000480425, PMID: 29422847

12 Kamide T, Misaki K, Nambu I, Mohri M, Uchiyama N,

Nakada M. Delayed asymptomatic coil migrations toward

different arteries after aneurysmal embolization: case report.

Acta Neurochir (Wien). 2017;159:593-8. DOI: 10.1007/s00701017-3083-6, PMID: 28110403

13 Wain RAJ, Whitty JPM, Dalal MD, Holmes MC, Ahmed W.

Blood flow through sutured and coupled microvascular anastomoses: A comparative computational study. J Plast Reconstr

Aesthet Surg. 2014;67:951-9. DOI: 10.1016/j.bjps.2014.03.016,

PMID: 24731801

14 Maruyama O, Kosaka R, Nishida M, Yamane T, Tatsumi E,

Taenaka Y. In vitro thrombogenesis resulting from decreased

shear rate and blood coagulability. Int J Artif Organs.

2016;39:194-9. DOI: 10.5301/ijao.5000496, PMID: 27199137

15 Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland

SM, et al. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases,

leading to monocyte adhesion. J Biol Chem. 2003;278:472918. DOI: 10.1074/jbc.M305150200, PMID: 12958309

16 Moens AL, Claeys MJ, Timmermans JP, Vrints CJ. Myocardial ischemia/reperfusion-injury, a clinical view on a complex

pathophysiological process. Int J Cardiol. 2005;100:179-90.

DOI: 10.1016/j.ijcard.2004.04.013, PMID: 15823623

312

© 2020 Tottori University Medical Press

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る