リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Analysis of the Optimum Tapering Angle in Microanastomosis Using Computational Fluid Dynamics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Analysis of the Optimum Tapering Angle in Microanastomosis Using Computational Fluid Dynamics

八木 俊路朗 Ikuta, Kento Miyazaki, Shohei Umeda, Ryunosuke Kanayama, Haruka A. Hifny, Mahmoud Morita, Maki Nakagaki, Makoto Tanabe, Makoto 陶山 淑子 Fukuoka Kohei 鳥取大学 DOI:10.33160/yam.2022.11.005

2022.11.28

概要

Background: In free flap transfer, size discrepancy between the vascular pedicle and recipient vessel can create a problem for microsurgeons and sometimes induces postoperative thrombus formation. When there is a major difference between the diameters of the vascular pedicle and the recipient vessel, the larger vessel is often tapered to perform the anastomosis properly. However, the decision on the tapering angle used depends mostly on the operator’s experience. In this study, computational fluid dynamics (CFD) was used to investigate the optimum tapering angle.

Methods: Using ANSYS ICEM 16.0 (ANSYS Japan, Tokyo, Japan), simulated vessels of diameters 1.5 mm and 3.0 mm were designed and then used to produce four anastomosis models with the 3.0-mm vessel tapered at angles of 15º, 30º, 60º, and 90º (no tapering). Venous perfusion with a mean value of 13.0 mL/min was simulated, and this was passed through the four anastomosis models in both the forward direction (F), from the smaller to the larger vessel, and the retrograde direction (R), from the larger to the smaller vessel. The velocity, wall shear stress (WSS), and oscillatory shear index (OSI) were measured in these eight patterns and then analyzed using OpenFOAM version 5.

Results: The decrease in velocity was limiting. The WSS was greater in the R direction than the F direction at every tapering angle. The OSI also tended to be almost the same in the F direction, and lower at smaller tapering angles in the R direction. And, it was greater in the F direction than in the R direction at every tapering angle. The OSI values for 15º and 30º were almost identical in the R direction.

Conclusion: The risk of thrombus formation is thought to be lower when tapering is used for anastomosis if the direction of flow is from the larger to the smaller vessel, rather than vice versa. These results also suggest that the optimum tapering angle is approximately 30º in both directions.

この論文で使われている画像

参考文献

1 Yagi S, Kamei Y, Nakayama B, Toriyama K, Torii S. A new design for free flap reconstruction of the tongue and orophar- ynx. J Reconstr Microsurg. 2008;24:211-9. DOI: 10.1055/ s-2008-1078691, PMID: 18491260

2 Kamei Y, Toriyama K, Yagi S, Takanari K, Torii S. Analysis of 13 cases with gastroepiploic vessels used as grafts. J Reconstr Microsurg. 2008;24:515-8. DOI: 10.1055/s-0028- 1088234, PMID: 18798143

3 Ryan AD, Goldberg I, OʼBrien, MacLeod AM. Anasto- mosis of vessels of unequal diameter using an interposi- tional vein graft. Plast Reconstr Surg. 1988;81:414-7. DOI: 10.1097/00006534-198803000-00018, PMID: 3340676

4 Yagi S, Sasaki T, Fukuhara T, Fujii K, Morita M, Fukuoka K, et al. Hemodynamic analysis of a three-point suture during tapering technique for microanastomosis using computational fluid dynamics. J Craniofac Surg. 2021;32:2749-52. DOI: 10.1097/SCS.0000000000007859, PMID: 34238882

5 Yagi S, Sasaki T, Fukuhara T, Fujii K, Morita M, Suyama Y, et al. Hemodynamic analysis of a microanastomosis using computational fluid dynamics. Yonago Acta Med. 2020;63:308-12. DOI: 10.33160/yam.2020.11.013, PMID: 33253341

6 Itatani K, Miyaji K, Qian Y, Liu JL, Miyakoshi T, Murakami A, et al. Influence of surgical arch reconstruction methods on single ventricle workload in the Norwood procedure. J Thorac Cardiovasc Surg. 2012;144:130-8. DOI: 10.1016/ j.jtcvs.2011.08.013, PMID: 21907359

7 Miyazaki S, Miyaji K, Itatani K, Oka N, Goto S, Nakamura M, et al. Surgical strategy for aortic arch reconstruction after the Norwood procedure based on numerical flow analysis. In- teract Cardiovasc Thorac Surg. 2018;26:460-7. DOI: 10.1093/ icvts/ivx332, PMID: 29049796

8 Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035-42. DOI: 10.1001/jama.282.21.2035, PMID: 10591386

9 He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng. 1996;118:74-82. DOI: 10.1115/1.2795948, PMID: 8833077

10 Cebral JR, Mut F, Weir J, Putman C. Quantitative charac- terization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol. 2011;32:145-51. DOI: 10.3174/ajnr.A2419, PMID: 21127144

11 Cebral JR, Vazquez M, Sforza DM, Houzeaux G, Tateshima S, Scrivano E, et al. Analysis of hemodynamics and wall me- chanics at sites of cerebral aneurysm rupture. J Neurointerv Surg. 2015;7:530-6. DOI: 10.1136/neurintsurg-2014-011247, PMID: 24827066

12 Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H, et al. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc Dis. 2012;34:121-9. DOI: 10.1159/000339678, PMID: 22965244

13 Wain RAJ, Whitty JPM, Dalal MD, Holmes MC, Ahmed W. Blood flow through sutured and coupled microvascular anas- tomoses: A comparative computational study. J Plast Reconstr Aesthet Surg. 2014;67:951-9. DOI: 10.1016/j.bjps.2014.03.016, PMID: 24731801

14 Maruyama O, Kosaka R, Nishida M, Yamane T, Tatsumi E, Taenaka Y. In vitro thrombogenesis resulting from decreased shear rate and blood coagulability. Int J Artif Organs. 2016;39:194-9. DOI: 10.5301/ijao.5000496, PMID: 27199137

15 Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, et al. Oscillatory shear stress stimulates endothelial pro- duction of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J Biol Chem. 2003;278:47291-8. DOI: 10.1074/jbc.M305150200, PMID: 12958309

16 Kietadisorn R, Juni RP, Moens AL. Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endocrinol Metab. 2012;302:E481-95. DOI: 10.1152/ ajpendo.00540.2011, PMID: 22167522

17 den Hengst WA, Gielis JF, Lin JY, Van Schil PE, De Windt LJ, Moens AL. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol. 2010;299:H1283-99. DOI: 10.1152/ajpheart.00251.2010, PMID: 20833966

18 Moens AL, Claeys MJ, Timmermans JP, Vrints CJ. Myocar- dial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol. 2005;100:179-90. DOI: 10.1016/j.ijcard.2004.04.013, PMID: 15823623

19 Kertzscher U, Goubergrits L, Affeld K. Flow separations in blood flow—its significance in the human circulation system and in artificial organs [Internet]. Southampton: WIT Press; 2022 [cited 2022 Aug 8]. Available from: https://www.witpress.com/Secure/elibrary/papers/1845640950/184564095 0508FU2.pdf

20 Suh JM, Chung CH, Chang YJ. Head and neck reconstruction using free flaps: a 30-year medical record review. Arch Cra- niofac Surg. 2021;22:38-44. DOI: 10.7181/acfs.2020.00745, PMID: 33714251

21 Lee CJ, Zhang Y, Takao H, Murayama Y, Qian Y. A fluid– structure interaction study using patient-specific ruptured and unruptured aneurysm: the effect of aneurysm morphology, hypertension and elasticity. J Biomech. 2013;46:2402-10. DOI: 10.1016/j.jbiomech.2013.07.016, PMID: 23962529

22 Valencia A, Burdiles P, Ignat M, Mura J, Bravo E, Rivera R, et al. Fluid structural analysis of human cerebral aneurysm using their own wall mechanical properties. Comput Math Methods Med. 2013;2013:1-18. DOI: 10.1155/2013/293128, PMID: 24151523

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る