リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Angle-resolved Photoemission Spectroscopy Study of Many-body Effects on 3D Topological Insulator Bi₂Te₃」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Angle-resolved Photoemission Spectroscopy Study of Many-body Effects on 3D Topological Insulator Bi₂Te₃

Kumar Amit 広島大学

2022.09.20

概要

Topological Insulators are a fascinating class of materials, which sparked renewed interest in the topological aspects of condense matter physics. Like conventional insulators, Topological insulators feature a gap that separates valance and conduction bands but conducting at edges or surface, so-called topological edge states or surface states. These states are protected by time-reversal symmetry, which makes them robust to nonmagnetic disorders and crystal defects. These metallic topological surface or edge states inside the bulk bandgap of TIs degenerate at the time-reversal invariant momentum (TRIM) and exhibit a Dirac-fermion-like linear dispersion away from the TRIM. The electron spin and momentum directions of the Topological surface states are locked due to the strong Spin-orbit coupling, which is so-called spin momentum locking. Although Dirac electrons are robust to non-magnetic impurity or lattice imperfections and elastic electron back scattering is suppressed due to spin momentum locking in the Topological insulators, but there is always possible to have electron-phonon scattering at elevated temperature. Which is very indispensable to clarifying the electron-phonon interaction in the topological insulators at elevated temperatures. For this study, We have chosen the promising candidate Bi2Te3, which is the second most studied topological insulator and belongs to the strong 3D topological insulators family.

In this study, we have grown Bi2Te3 single crystal using the modified Bridgeman method and systematically investigated the electron-phonon interaction using High-resolution laser μ -angle-resolved photoemission spectroscopy. We did not observe band renormalization so-called kink structure within the Debye characteristic energy range at low temperature, indicating weak electron-phonon coupling. As we did not find kink structure at low temperature, therefore we ran the detailed temperature-dependent angle-resolved photoemission spectroscopy measurement. We found that the Dirac point is shifting upward on heating, however, the Dirac point position is fully recovered in the temperature cycle, which confirms the reproducibility. By analyzing the temperature-dependent Energy distribution curves, we confirmed for the first time that bulk and the topological surface bands are non-rigid-like bands. By considering the temperature-induced shift, we assume that scattering states are changing with temperature. Therefore, we evaluated the electron-phonon coupling parameter at fixed energy with respect to the Dirac point. We revealed that the magnitude of the electron-phonon coupling weakly depends on the chosen initial energy state and nice matched with the first-principle calculation. Our study provides a deep incite about electron-phonon interaction in the Topological surface states of Bi2Te3, suggesting weak coupling electron-phonon interaction. Our analysis method can also be apply further to other Topological insulators or Topological superconductors. The most important benefit of this analysis is, instead of growing many samples with differently tuned chemical potential, one can extract electron-phonon coupling information by choosing the initial energy states in only one sample.

この論文で使われている画像

参考文献

[1] X.-L. Qi and S.-C. Zhang, Reviews of Modern Physics 83, 1057 (2011).

[2] M. Z. Hasan and C. L. Kane, Reviews of Modern Physics 82, 3045 (2010).

[3] K. von Klitzing, G. Dorda, and M. Pepper, Physical Review Letters 45, 494 (1980).

[4] W. Tian, W. Yu, J. Shi, and Y. Wang, Materials (Basel) 10 (2017).

[5] C. L. Kane and E. J. Mele, Physical Review Letters 95, 4, 226801 (2005).

[6] B. A. Bernevig, Hughes, T. L. & Zhang, S. C, Science 314, 1757 (2006).

[7] X.-L. Qi and S.-C. Zhang, Physics Today 63, 33 (2010).

[8] L. Fu and C. L. Kane, Physical Review B 76, 17, 045302 (2007).

[9] H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat Phys 5, 438 (2009).

[10] J. G. Analytis, J.-H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, and I. R. Fisher, Physical Review B 81 (2010).

[11] D. Hsieh et al., Nature 460, 1101 (2009).

[12] Y. L. Chen et al., Science 325, 178 (2009).

[13] N. Kumar, S. N. Guin, K. Manna, C. Shekhar, and C. Felser, Chem Rev 121, 2780 (2021).

[14] Y. Ando, Journal of the Physical Society of Japan 82, 102001 (2013).

[15] M. Z. Hasan and J. E. Moore, Annual Review of Condensed Matter Physics 2, 55 (2011).

[16] J. E. Moore, Nature 464, 194 (2010).

[17] D. R. Cooper et al., ISRN Condensed Matter Physics 2012, 1 (2012).

[18] R. B. Laughlin, Physical Review Letters 50, 1395 (1983).

[19] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Physical Review Letters 48, 1559 (1982).

[20] F. D. M. Haldane, Physical review letters 61, 2015 (1988).

[21] K. He, Y. Wang, and Q.-K. Xue, Natl. Sci. Rev. 1, 38 (2013).

[22] M. V. Berry, Proc. R. Soc. Lond. A-Math. Phys. Sci. 392, 45 (1984).

[23] T. Ando and Y. Uemura, Journal of the Physical Society of Japan 36, 959 (1974).

[24] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Physical review letters 49, 405 (1982).

[25] J. Maciejko, T. L. Hughes, and S.-C. Zhang, Annual Review of Condensed Matter Physics 2, 31 (2011).

[26] L. Fu, C. L. Kane, and E. J. Mele, Physical Review Letters 98, 4, 106803 (2007).

[27] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature 452, 970 (2008).

[28] A. Nishide et al., Physical Review B 81, 4, 041309 (2010).

[29] Y. Xia et al., Nat Phys 5, 398 (2009).

[30] D. Hsieh et al., Physical Review Letters 103, 4, 146401 (2009).

[31] P. Roushan et al., Nature 460, 1106 (2009).

[32] L. Plucinski, J Phys Condens Matter 31, 183001 (2019).

[33] D. Pesin and A. H. MacDonald, Nat. Mater. 11, 409 (2012).

[34] W. Z. Rui Yu, Hai-Jun Zhang, Shou-Cheng Zhang, Xi Dai, and Zhong Fang, Science 329, 61 (2010).

[35] L. Fu and C. L. Kane, Physical Review Letters 100, 4, 096407 (2008).

[36] L. A. Fu and E. Berg, Physical Review Letters 105, 4, 097001 (2010).

[37] R. L. Xiao-Liang Qi, Jiadong Zang, and Shou-Cheng Zhang, Science 323, 1184 (2009).

[38] Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Physical Review B 79, 5, 195208 (2009).

[39] R. J. Cava, H. W. Ji, M. K. Fuccillo, Q. D. Gibson, and Y. S. Hor, J. Mater. Chem. C 1, 3176 (2013).

[40] T. Shinjo, Nanomagnetism and spintronics (Elsevier, 2013).

[41] C. Chen et al., Sci Rep 3, 2411 (2013).

[42] B. K. Gupta et al., Scientific Reports 8, 6, 9205 (2018).

[43] A. Singh et al., Materials Research Bulletin 98, 1 (2018).

[44] H. F. Yang, A. J. Liang, C. Chen, C. F. Zhang, N. B. M. Schroeter, and Y. L. Chen, Nature Reviews Materials 3, 341 (2018).

[45] A. Damascelli, Z. Hussain, and Z. X. Shen, Reviews of Modern Physics 75, 473 (2003).

[46] D. H. Lu, I. M. Vishik, M. Yi, Y. L. Chen, R. G. Moore, and Z. X. Shen, in Annual Review of Condensed Matter Physics, Vol 3, edited by J. S. Langer (Annual Reviews, Palo Alto, 2012), pp. 129.

[47] B. Q. Lv, T. Qian, and H. Ding, Nature Reviews Physics 1, 609 (2019).

[48] D. Lu, I. M. Vishik, M. Yi, Y. Chen, R. G. Moore, and Z.-X. Shen, Annual Review of Condensed Matter Physics 3, 129 (2012).

[49] H. Hertz, Ann. Phys.-Berlin 267, 983 (1887).

[50] A. Einstein, Ann. Phys.-Berlin 4 (1905).

[51] S. Hüfner, Photoelectron spectroscopy: principles and applications (Springer Science & Business Media, 2013).

[52] A. Zangwill, Physics at surfaces (Cambridge university press, 1988).

[53] H. Iwasawa, E. F. Schwier, M. Arita, A. Ino, H. Namatame, M. Taniguchi, Y. Aiura, and K. Shimada, Ultramicroscopy 182, 85 (2017).

[54] P. Hofmann, I. Y. Sklyadneva, E. D. L. Rienks, and E. V. Chulkov, New Journal of Physics 11, 125005 (2009).

[55] N. Fischer, S. Schuppler, R. Fischer, T. Fauster, and W. Steinmann, Physical Review B 43, 14722 (1991).

[56] S. R. Park, W. S. Jung, C. Kim, D. J. Song, C. Kim, S. Kimura, K. D. Lee, and N. Hur, Physical Review B 81, 041405 (2010).

[57] R. C. Hatch, M. Bianchi, D. Guan, S. Bao, J. Mi, B. B. Iversen, L. Nilsson, L. Hornekær, and P. Hofmann, Physical Review B 83, 241303 (2011).

[58] Z. H. Pan, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, and T. Valla, Phys Rev Lett 108, 187001 (2012).

[59] T. Kondo et al., Phys Rev Lett 110, 217601 (2013).

[60] X. Zhu, L. Santos, R. Sankar, S. Chikara, C. Howard, F. C. Chou, C. Chamon, and M. El-Batanouny, Phys Rev Lett 107, 186102 (2011).

[61] X. Zhu, L. Santos, C. Howard, R. Sankar, F. C. Chou, C. Chamon, and M. El- Batanouny, Phys Rev Lett 108, 185501 (2012).

[62] A. Tamtögl et al., Physical Review B 95, 195401 (2017).

[63] G. Q. Huang, EPL (Europhysics Letters) 100, 17001 (2012).

[64] R. Heid, I. Y. Sklyadneva, and E. V. Chulkov, Sci Rep 7, 1095 (2017).

[65] H. J. Goldsmid, Materials 7, 2577 (2014).

[66] T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, and T. Sasagawa, Physical Review B 82, 081305 (2010).

[67] P. Nozieres, Theory of interacting Fermi systems (Benjiamin, 1964).

[68] G. Grimvall, (The Electron-Phonon Interaction in Metals NorthHolland, Amsterdam, 1981).

[69] G. D. Mahan, Many-particle physics (Kluwer Academic/Plenum Publishers, New york, 2000).

[70] P. B. Allen and M. Cardona, Physical Review B 23, 1495 (1981).

[71] X. C. K. P. O’Donnell, Applied Physics Letters 58, 2924 (1991).

[72] N. W. Ashcroft and a. N. D. Mermin, Solid state physics (Sanders College Publishing, Philadelphia, 1976) Chap. 2

[73] D. Kim, Q. Li, P. Syers, N. P. Butch, J. Paglione, S. Das Sarma, and M. S. Fuhrer, Phys Rev Lett 109, 166801 (2012).

[74] M. V. Costache, I. Neumann, J. F. Sierra, V. Marinova, M. M. Gospodinov, S. Roche, and S. O. Valenzuela, Physical Review Letters 112, 086601 (2014).

[75] C. Howard, M. El-Batanouny, R. Sankar, and F. C. Chou, Physical Review B 88, 035402 (2013).

[76] C. Howard and M. El-Batanouny, Physical Review B 89, 075425 (2014).

[77] A. Ruckhofer, D. Campi, M. Bremholm, P. Hofmann, G. Benedek, M. Bernasconi, W. E. Ernst, and A. Tamtögl, Physical Review Research 2, 023186 (2020).

[78] E. W. Plummer, J. R. Shi, S. J. Tang, E. Rotenberg, and S. D. Kevan, Progress in Surface Science 74, 251 (2003).

[79] J. Sánchez-Barriga, M. R. Scholz, E. Golias, E. Rienks, D. Marchenko, A. Varykhalov, L. V. Yashina, and O. Rader, Physical Review B 90, 195413 (2014).

[80] S. Raghu, S. B. Chung, X. L. Qi, and S. C. Zhang, Phys Rev Lett 104, 116401 (2010).

[81] S. Giraud and R. Egger, Physical Review B 83, 245322 (2011).

[82] S. Giraud, A. Kundu, and R. Egger, Physical Review B 85, 035441 (2012).

[83] S. Das Sarma and Q. Li, Physical Review B 88, 081404 (2013).

[84] V. Parente, A. Tagliacozzo, F. von Oppen, and F. Guinea, Physical Review B 88, 075432 (2013).

[85] N.W. Ashcroft and N. D. Mermin, Chap. 26. Solid State Physics Sanders College Publishing, Philadelphia, 1976 ).

[86] J. Jiang, K. Shimada, H. Hayashi, H. Iwasawa, Y. Aiura, H. Namatame, and M. Taniguchi, Physical Review B 84, 155124 (2011).

[87] G. Grimvall, (The Electron-Phonon Interaction in Metals(NorthHolland, Amsterdam, 1981)).

[88] E. Frantzeskakis et al., Physical Review B 91, 15, 205134 (2015).

[89] R. Jiang, L. L. Wang, M. L. Huang, R. S. Dhaka, D. D. Johnson, T. A. Lograsso, and A. Kaminski, Physical Review B 86, 4, 085112 (2012).

[90] J. Nayak, G. H. Fecher, S. Ouardi, C. Shekhar, C. Tusche, S. Ueda, E. Ikenaga, and C. Felser, Physical Review B 98, 075206 (2018).

[91] K. P. Odonnell and X. Chen, Applied Physics Letters 58, 2924 (1991).

[92] S. R. Park et al., New Journal of Physics 13, 013008 (2011).

[93] P. D. C. King et al., Physical Review Letters 107, 5, 096802 (2011).

[94] K. Sakamoto et al., Nano Lett. 21, 4415 (2021).

[95] M. S. Bahramy et al., Nat. Commun. 3, 7, 1159 (2012).

[96] Z. H. Zhu et al., Physical Review Letters 107, 5, 186405 (2011).

[97] E. Frantzeskakis et al., Sci Rep 5, 16309 (2015).

[98] E. Frantzeskakis et al., Physical Review X 7, 16, 041041 (2017).

[99] A. A. Kordyuk, T. K. Kim, V. B. Zabolotnyy, D. V. Evtushinsky, M. Bauch, C. Hess, B. Buchner, H. Berger, and S. V. Borisenko, Physical Review B 83, 4, 081303 (2011).

[100] M. S. Hofman, D. Z. Wang, Y. Yang, and B. E. Koel, Surf. Sci. Rep. 73, 153 (2018).

[101] R. A. Ciufo, S. M. Han, M. E. Floto, J. E. Eichler, G. Henkelman, and C. B. Mullins, Phys. Chem. Chem. Phys. 22, 15281 (2020).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る