リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthesis and Structure-Activity Relationships of EML4-ALK Inhibitors」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthesis and Structure-Activity Relationships of EML4-ALK Inhibitors

飯久保, 一彦 筑波大学 DOI:10.15068/00160629

2020.07.27

概要

Echinoderm microtubule-associated protein-like 4 (EML4)–anaplastic lymphoma kinase (ALK) is considered a valid therapeutic target for the treatment of EML4–ALK-positive non-small cell lung cancer (NSCLC). In this study, synthesis and structure–activity relationship (SAR) studies on 1,3,5-triazine derivatives and pyrazine-2-carboxamide derivatives were performed to identify novel EML4–ALK inhibitors.

 In Chapter 1, I describe the synthesis and biological evaluation of 1,3,5-triazine derivatives. I also discuss the detailed SAR studies conducted on each structural component of 1,3,5-triazine derivative compounds using computational modeling. First, substituents at the 6- position of the 1,3,5-triazine ring were examined. SAR studies revealed that unsubstituted compound 12a showed the most potent inhibitory activity against EML4–ALK among all compounds reported. Second, the SAR of the sulfonyl moiety of compound 12a was investigated. These experiments revealed that the 2-isopropylsulfonyl derivative had the most potent inhibitory activity against EML4–ALK among all compounds reported. Third, substituent effects at the methoxy group of compound 12a were examined. These experiments showed that the oxygen atom in the 2-methoxy group was important for the compound’s inhibitory activity. Finally, optimization of the amine moiety revealed that compound 12a exhibited the most promising in vitro profile among all compounds reported. The antitumor activity of compound 12a was evaluated in mice xenografted with NCI-H2228, human NSCLC tumor cells that endogenously express EML4–ALK. Oral administration of compound 12a demonstrated dose-dependent antitumor activity and induced tumor regression.

 In Chapter 2, I describe the synthesis and biological evaluation of pyrazine-2- carboxamide derivatives to identify a more potent EML4–ALK inhibitor with a different chemical structure to that of compound 12a. I also discuss the detailed SAR studies conducted on each structural component of pyrazine-2-carboxamide derivative compounds using computational modeling. First, the substituent effects at the ethyl moiety of compound 30a were examined. SAR studies revealed that the ethyl derivative 30a showed the most potent inhibitory activity against EML4–ALK among all compounds reported. Next, optimization of the 3- (methanesulfonyl)anilino component of compound 30a was performed. The docking model of compound 12a with ALK indicated that the amine moiety of compound 12a extends into the solvent-exposed region located outside the ATP-binding pocket. The docking model of 30a suggested that the 3-(methanesulfonyl)anilino moiety of compound 30a extends into the same region. Consistent with this observation, compound 35 retained inhibitory activity against EML4–ALK compared to that of compound 30a (30a: IC50 = 17 nM, 35: IC50 = 8.9 nM). Replacement of the 2-methoxy group of compound 35 with a 3-methoxy group enhanced the inhibitory activity (37a: IC50 = 0.37 nM). Finally, optimization of the amine moiety led to the discovery of compound 37c. The antitumor activity of compound 37c was evaluated in mice xenografted with 3T3 cells expressing EML4–ALK. Once-daily oral administration of compound 37c at a dose of 10 mg/kg for 5 days demonstrated 62% tumor regression, while compound 12a showed 81% tumor growth inhibition.

 Based on the two abovementioned studies, compounds 12a and 37c were identified as novel EML4–ALK inhibitors. In mice xenografted with 3T3 cells expressing EML4–ALK, the antitumor activity of compound 37c was more potent than that observed for compound 12a.

この論文で使われている画像

参考文献

1. Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D. M., Forman D., Bray F., Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer, 2015, 136, E359–E386.

2. American Cancer Society, Lung Cancer: https://www.cancer.org/cancer/lung-cancer.html, [accessed on June 29, 2019]

3. Sharma S. V., Settleman J., Oncogene addiction: setting the stage for molecularly targeted cancer therapy, Genes Dev., 2007, 21, 3214–3231.

4. Reck M., Heigener D. F., Mok T., Soria J.-C., Rabe K. F., Management of non-small-cell lung cancer: recent developments, Lancet, 2013, 382, 709–719.

5. Morris S. W., Kirstein M. N., Valentine M. B., Dittmer K. G., Shapiro D. N., Saltman D. L., Look A. T., Fusion of a Kinase Gene, ALK, to a Nucleolar Protein Gene, NPM, in Non- Hodgkin's Lymphoma., Science, 1994, 263, 1281–1284.

6. Duyster J., Bai R.-Y., Morris S.W., Translocations involving anaplastic lymphoma kinase (ALK), Oncogene, 2001, 20, 5623–5637.

7. Chiarle R., Voena C., Ambrogio C., Piva R., Inghirami G., The anaplastic lymphoma kinase in the pathogenesis of cancer, Nat. Rev. Cancer, 2008, 8, 11–23.

8. Mossé Y. P., Wood A., Maris J. M., Inhibition of ALK Signaling for Cancer Therapy, Clin. Cancer Res., 2009, 15, 5609–5614.

9. Hallberg B., Palmer R. H., Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology, Nat. Rev. Cancer, 2013, 13, 685–700.

10. Soda M., Choi Y. L., Enomoto M., Takada S., Yamashita Y., Ishikawa S., Fujiwara S., Watanabe H., Kurashina K., Hatanaka H., Bando M., Ohno S., Ishikawa Y., Aburatani H., Niki T., Sohara Y., Sugiyama Y., Mano H., Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer, Nature, 2007, 448, 561–566.

11. Pollmann M., Parwaresch R., Adam-Klages S., Kruse M.-L., Buck F., Heidebrecht H.-J., Human EML4, a novel member of the EMAP family, is essential for microtubule formation, Exp. Cell Res., 2006, 312, 3241–3251.

12. Soda M., Takada S., Takeuchi K., Choi Y. L., Enomoto M., Ueno T., Haruta H., Hamada T., Yamashita Y., Ishikawa Y., Sugiyama Y., Mano H., A mouse model for EML4–ALK-positive lung cancer, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 19893–19897.

13. Mano H., Non-solid oncogenes in solid tumors: EML4–ALK fusion genes in lung cancer, Cancer Sci., 2008, 99, 2349–2355.

14. Shaw A. T., Solomon B., Targeting Anaplastic Lymphoma Kinase in Lung Cancer, Clin. Cancer Res., 2011, 17, 2081–2086.

15. Cui J. J., Tran-Dubé M., Shen H., Nambu M., Kung P.-P., Pairish M., Jia L., Meng J., Funk L., Botrous I., McTigue M., Grodsky N., Ryan K., Padrique E., Alton G., Timofeevski S., Yamazaki S., Li Q., Zou H., Christensen J., Mroczkowski B., Bender S., Kania R. S., Edwards M. P., Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal–Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK), J. Med. Chem., 2011, 54, 6342–6363.

16. Marsilje T. H., Pei W., Chen B., Lu W., Uno T., Jin Y., Jiang T., Kim S., Li N., Warmuth M., Sarkisova Y., Sun F., Steffy A., Pferdekamper A. C., Li A. G., Joseph S. B., Kim Y., Liu B., Tuntland T., Cui X., Gray N. S., Steensma R., Wan Y., Jiang J., Chopiuk G., Li J., Gordon W. P., Richmond W., Johnson K., Chang J., Groessl T., He Y.-Q., Phimister A., Aycinena A., Lee C. C., Bursulaya B., Karanewsky D. S., Seidel H. M., Harris J. L., Michellys P.-Y., Synthesis, Structure–Activity Relationships, and in Vivo Efficacy of the Novel Potent and Selective Anaplastic Lymphoma Kinase (ALK) Inhibitor 5-Chloro-N2-(2-isopropoxy-5- methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4- diamine (LDK378) Currently in Phase 1 and Phase 2 Clinical Trials, J. Med. Chem., 2013, 56, 5675–5690.

17. Shaw A. T., Kim D.-W., Mehra R., Tan D. S. W., Felip E., Chow L. Q. M., Camidge D. R., Vansteenkiste J., Sharma S., De Pas T., Riely G. J., Solomon B. J., Wolf J., Thomas M., Schuler M., Liu G., Santoro A., Lau Y. Y., Goldwasser M., Boral A. L., Engelman J. A., Ceritinib in ALK-Rearranged Non-Small-Cell Lung Cancer, N. Engl. J. Med., 2014, 370, 1189–1197.

18. Kinoshita K., Asoh K., Furuichi N., Ito T., Kawada H., Hara S., Ohwada J., Miyagi T., Kobayashi T., Takanashi K., Tsukaguchi T., Sakamoto H., Tsukuda T., Oikawa N., Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802), Bioorg. Med. Chem., 2012, 20, 1271–1280.

19. Kodama T., Tsukaguchi T., Yoshida M., Kondoh O., Sakamoto H., Selective ALK inhibitor alectinib with potent antitumor activity in models of crizotinib resistance, Cancer Lett., 2014, 351, 215–221.

20. Huang W.-S., Liu S., Zou D., Thomas M., Wang Y., Zhou T., Romero J., Kohlmann A., Li F., Qi J., Cai L., Dwight T. A., Xu Y., Xu R., Dodd R., Toms A., Parillon L., Lu X., Anjum R., Zhang S., Wang F., Keats J., Wardwell S. D., Ning Y., Xu Q., Moran L. E., Mohemmad Q. K., Jang H. G., Clackson T., Narasimhan N. I., Rivera V. M., Zhu X., Dalgarno D., Shakespeare W. C., Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase, J. Med. Chem., 2016, 59, 4948–4964.

21. Johnson T. W., Richardson P. F., Bailey S., Brooun A., Burke B. J., Collins M. R., Cui J. J., Deal J. G., Deng Y.-L., Dinh D., Engstrom L. D., He M., Hoffman J., Hoffman R. L., Huang Q., Kania R. S., Kath J. C., Lam H., Lam J. L., Le P. T., Lingardo L., Liu W., McTigue M., Palmer C. L., Sach N. W., Smeal T., Smith G. L., Stewart A. E., Timofeevski S., Zhu H., Zhu J., Zou H. Y., Edwards M. P., Discovery of (10R)-7-Amino-12-fluoro-2,10,16- trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]- benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a Macrocyclic Inhibitor of Anaplastic Lymphoma Kinase (ALK) and c-ros Oncogene 1 (ROS1) with Preclinical Brain Exposure and Broad-Spectrum Potency against ALK-Resistant Mutations, J. Med. Chem., 2014, 57, 4720–4744.

22. Elleraas J., Ewanicki J., Johnson T. W., Sach N. W., Collins M. R., Richardson P. F., Conformational Studies and Atropisomerism Kinetics of the ALK Clinical Candidate Lorlatinib (PF-06463922) and Desmethyl Congeners, Angew. Chem. Int. Ed., 2016, 55, 3590–3595.

23. Roskoski R. Jr., Anaplastic lymphoma kinase (ALK) inhibitors in the treatment of ALK- driven lung cancers, Pharmacol. Res., 2017, 117, 343–356.

24. Katayama R., Drug resistance in anaplastic lymphoma kinase-rearranged lung cancer, Cancer Sci., 2018, 109, 572–580.

25. Galkin A. V., Melnick J. S., Kim S., Hood T. L., Li N., Li L., Xia G., Steensma R., Chopiuk G., Jiang J., Wan Y., Ding P., Liu Y., Sun F., Schultz P. G., Gray N. S., Warmuth M., Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 270–275.

26. Mori M., Ueno Y., Konagai S., Fushiki H., Shimada I., Kondoh Y., Saito R., Mori K., Shindou N., Soga T., Sakagami H., Furutani T., Doihara H., Kudoh M., Kuromitsu S., The Selective Anaplastic Lymphoma Receptor Tyrosine Kinase Inhibitor ASP3026 Induces Tumor Regression and Prolongs Survival in Non–Small Cell Lung Cancer Model Mice, Mol. Cancer Ther., 2014, 13, 329–340.

27. Iikubo K., Kondoh Y., Shimada I., Matsuya T., Mori K., Ueno Y., Okada M., Discovery of N-{2-Methoxy-4-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]phenyl}-N′-[2-(propane-2- sulfonyl)phenyl]-1,3,5-triazine-2,4-diamine (ASP3026), a Potent and Selective Anaplastic Lymphoma Kinase (ALK) Inhibitor, Chem. Pharm. Bull., 2018, 66, 251–262.

28. Kondoh Y., Iikubo K., Kuromitsu S., Shindo N., Soga T., Furutani T., Shimada I., Matsuya T., Kurosawa K., Kamikawa A., Mano H., Di(arylamino)aryl compound, Patent: WO 2009/008371, 2009.

29. Kuntz K., Uehling D. E., Waterson A. G., Emmitte K. A., Stevens K., Shotwell J. B., SmithS. C., Nailor K. E., Salovich J. M., Wilson B. J., Cheung M., Mook R. A., Baum E. W., Moorthy G., Imidazopyridine kinase inhibitors, Patent: US 2008/0300242, 2008.

30. Reitz A. B., Baxter E. W., Codd E. E., Davis C. B., Jordan A. D., Maryanoff B. E., Maryanoff C. A., McDonnell M. E., Powell E. T., Renzi M. J., Schott M. R., Scott M. K., Shank R. P., Vaught J. L., Orally Active Benzamide Antipsychotic Agents with Affinity for Dopamine D2, Serotonin 5-HT1A, and Adrenergic α1 Receptors, J. Med. Chem., 1998, 41, 1997–2009.

31. Arvanitis A. G., Gilligan P. J., Chorvat R. J., Cheeseman R. S., Christos T. E., Bakthavatchalam R., Beck J. P., Cocuzza A. J., Hobbs F. W., Wilde R. G., Arnold C., Chidester D., Curry M., He L., Hollis A., Klaczkiewicz J., Krenitsky P. J., Rescinito J. P., Scholfield E., Culp S., De Souza E. B., Fitzgerald L., Grigoriadis D., Tam S. W., Wong Y. N., Huang S.-M., Shen H. L., Non-Peptide Corticotropin-Releasing Hormone Antagonists: Syntheses and Structure−Activity Relationships of 2-Anilinopyrimidines and -triazines, J. Med. Chem., 1999, 42, 805–818.

32. Courtin A., von Tobel H.-R., Auerbach G., Notizen zur Synthese von 2- Aminophenylsulfonen, Helv. Chim. Acta, 1980, 63, 1412–1419.

33. Beria I., Ballinari D., Bertrand J. A., Borghi D., Bossi R. T., Brasca M. G., Cappella P., Caruso M., Ceccarelli W., Ciavolella A., Cristiani C., Croci V., De Ponti A., Fachin G., Ferguson R. D., Lansen J., Moll J. K., Pesenti E., Posteri H., Perego R., Rocchetti M., Storici P., Volpi D., Valsasina B., Identification of 4,5-Dihydro-1H-pyrazolo[4,3-h]quinazoline Derivatives as a New Class of Orally and Selective Polo-Like Kinase 1 Inhibitors, J. Med. Chem., 2010, 53, 3532–3551.

34. Tang R.-Y., Zhong P., Lin Q.-L., Sulfite-Promoted One-Pot Synthesis of Sulfides by Reaction of Aryl Disulfides with Alkyl Halides, Synthesis, 2007, 85–91.

35. Mesaros E. F., Thieu T. V., Wells G. J., Zificsak C. A., Wagner J. C., Breslin H. J., Tripathy R., Diebold J. L., McHugh R. J., Wohler A. T., Quail M. R., Wan W., Lu L., Huang Z., Albom M. S., Angeles T. S., Wells-Knecht K. J., Aimone L. D., Cheng M., Ator M. A., Ott G. R., Dorsey B. D., Strategies to Mitigate the Bioactivation of 2-Anilino-7-Aryl- Pyrrolo[2,1-f][1,2,4]triazines: Identification of Orally Bioavailable, Efficacious ALK Inhibitors, J. Med. Chem., 2012, 55, 115–125.

36. Bossi R. T., Saccardo M. B., Ardini E., Menichincheri M., Rusconi L., Magnaghi P., Orsini P., Avanzi N., Borgia A. L., Nesi M., Bandiera T., Fogliatto G., Bertrand J. A., Crystal Structures of Anaplastic Lymphoma Kinase in Complex with ATP Competitive Inhibitors, Biochemistry, 2010, 49, 6813–6825.

37. Iikubo K., Kurosawa K., Matsuya T., Kondoh Y., Kamikawa A., Moritomo A., Iwai Y., Tomiyama H, Shimada I., Synthesis and structure–activity relationships of pyrazine-2- carboxamide derivatives as novel echinoderm microtubule-associated protein-like 4 (EML4)–anaplastic lymphoma kinase (ALK) inhibitors, Bioorg. Med. Chem., 2019, 27, 1683–1692.

38. Shimada I., Kurosawa K., Matsuya T., Iikubo K., Kondoh Y., Kamikawa A., Tomiyama H., Iwai Y., Diamino heterocyclic carboxamide compound, Patent: WO 2010/128659, 2010.

39. Shimada I., Matsuya T., Kurosawa K., Iikubo K., Kamikawa A., Kuromitsu S., Shindou N., Futami T., Kawase T., Sano Y., Yamanaka A., Nishimura K., Asaumi M., Tomiyama H., Iwai Y., Arylaminoheterocyclic carboxamide compound, Patent: WO 2012/053606, 2012.

40. Suzuki T., Onda K., Murakami T., Negoro K., Yahiro K., Maruyama T., Shimaya A., Ohta M., Novel nitrogen-containing heterocyclic derivatives or salts thereof, Patent: WO00/76980, 2000.

41. Schrödinger Release 2017-1: Maestro, Schrödinger, LLC, New York, NY, 2017.

42. Molecular Operating Environment (MOE), 2016.08; Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2016.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る