リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Constraints on Primordial Magnetic Fields with Cosmic Microwave Background and 21-cm Line Observations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Constraints on Primordial Magnetic Fields with Cosmic Microwave Background and 21-cm Line Observations

箕田, 鉄兵 名古屋大学

2021.06.23

概要

多くの銀河や銀河団で磁場の存在が報告されているが、これらの磁場の起源は未解明である。現在考えられている有力なシナリオの一つは、初期宇宙において生成された微弱な磁場(以下,原始磁場と呼ぶ)が現在観測される天体の磁場の種になったという仮説である。しかしながら、原始磁場の存在を示す観測データはほとんど得られていない。一方、宇宙マイクロ波背景放射(CMB)や大規模構造の観測によって、原始磁場の強度に対する上限値が与えられている。本論文では原始磁場がCMBの温度と偏光の非等方性に与える影響の再考察を行い、最新の観測データを用いた制限を行った。また、新しい観測量として中性水素21-cm線のグローバルシグナルに着目し、原始磁場がこの観測量に与える影響と近年の観測データからの制限について議論を行った。

本論文ではまず、原始磁場が陽子と電子の速度場に与える影響の見積もりを行った。原始磁場が存在していたとすれば、磁場がビッグバン中の陽子や電子の運動に影響を与える。これらの荷電粒子はCMB光子とトムソン散乱によって強く結合しているため、原始磁場が荷電粒子の運動に与える影響はCMBの温度揺らぎや偏光成分として観測されることになる。実際にはこれらは観測されていないことから,原始磁場の強度に対して制限を与えることができる。プランク衛星などのCMBの観測により、原始磁場の強度にはおよそ4.4ナノガウスの上限が得られている。本論文では、先行研究で議論されていなかった、光子の平均自由行程よりも小さいスケールにおける荷電粒子の速度場のゆらぎを計算し、観測されるCMB光子の温度と偏光の非等方性の計算を行った。この結果、プランク衛星の角度分解能より小さいスケールにおいても、原始磁場によってCMBの非等方性が生じることがわかった。そこで、プランク衛星よりも小さい角度分解能を持つ、南極点望遠鏡の観測データを用いた原始磁場の強度の制限を行った。これによって、原始磁場の強度に対して1.5ナノガウスという上限を与えることができた。

次に、本論文ではスニヤエフ・ゼルドビッチ効果(SZ効果)によって作られる温度ゆらぎについて議論を行った。ここでSZ効果とは、CMB光子が大規模構造などに存在する高温のガスに散乱されることでCMB光子の温度が周波数に依存して見かけ変化する現象のことである。原始磁場が存在すれば宇宙の大規模構造の進化にも影響を与えることが先行研究で指摘されている。とりわけ、原始磁場によるローレンツ力がガスの密度進化に与える影響と、磁場のエネルギー散逸がガスの温度進化に与える影響の重要性が活発に議論されてきた。本論文ではこれらの影響を考慮してガスの密度と温度の時間進化を計算し、得られたガスの物理量の値からSZ効果によってつくられるCMB温度揺らぎを見積もった。計算の結果、原始磁場は見込み角度が約1秒角の非常に小さいスケールで大きなCMB温度揺らぎを作ること、このCMB温度揺らぎは銀河間空間のガス密度が低い領域において引き起こされていることを示した。

さらに、本論文では新しい観測量である中性水素21-cm線のグローバルシグナルを用いた原始磁場の制限についても議論をおこなった。中性水素21-cm線は水素原子の超微細構造に起因する電磁波であり、その全天での平均強度であるグローバルシグナルは水素ガスの平均温度に強く依存する。近年、オーストラリアの電波観測機器Experiment to Detect the Global EoR Signature(EDGES)が21-cm線グローバルシグナルの検出を報告している。この観測結果によると赤方偏移が15から20の時代の水素ガスの平均温度はCMB温度よりも小さかったことが示唆されている。したがって、EDGESの観測結果は水素ガスの宇宙論的な加熱源に対して制限を与えることができ、本論文では、この水素ガスの加熱源として原始磁場のエネルギー散逸を考えた。原始磁場の強度とそのスケール依存性の二つのパラメータに対してエネルギー散逸に伴うガスの加熱率を表し、宇宙論的なガスの温度進化を計算して、EDGESの観測による原始磁場の強度に制限を与えた。この結果、原始磁場のMpcスケールでの強度が0.1ナノガウス以下であるという制限を得た。

参考文献

[1] T. Akahori, H. Nakanishi, Y. Sofue, Y. Fujita, K. Ichiki, S. Ideguchi, O. Kameya, T. Kudoh, Y. Kudoh, M. Machida, Y. Miyashita, H. Ohno, T. Ozawa, K. Takahashi, M. Takizawa, and D. G. Yamazaki. Cosmic magnetism in centimeter- and meter-wavelength radio astronomy. PASJ, December 2017.

[2] Rainer Beck and Richard Wielebinski. Magnetic Fields in Galaxies, volume 5, page 641. 2013.

[3] V. L. Ginzburg and S. I. Syrovatskii. Cosmic Magnetobremsstrahlung (synchrotron Radiation). ARA&A, 3:297, 1965.

[4] V. L. Ginzburg and S. I. Syrovatskii. Developments in the Theory of Synchrotron Radiation and its Reabsorption. ARA&A, 7:375, 1969.

[5] R. Wielebinski. Magnetic Fields in the Milky Way, Derived from Radio Continuum Observations and Faraday Rotation Studies. In R. Wielebinski and R. Beck, editors, Cosmic Magnetic Fields, volume 664 of Lecture Notes in Physics, Berlin Springer Verlag, page 89, 2005.

[6] J. C. Brown. The Magnetic Field of the Milky Way Galaxy. In R. Kothes, T. L. Landecker, and A. G. Willis, editors, The Dynamic Interstellar Medium: A Celebration of the Canadian Galactic Plane Survey, volume 438 of Astronomical Society of the Pacific Conference Series, page 216, December 2010.

[7] M. Haverkorn. Magnetic Fields in the Milky Way. In A. Lazarian, E. M. de Gouveia Dal Pino, and C. Melioli, editors, Magnetic Fields in Diffuse Media, volume 407 of Astrophysics and Space Science Library, page 483, 2015.

[8] R. Beck and B. M. Gaensler. Observations of magnetic fields in the Milky Way and in nearby galaxies with a Square Kilometre Array. New A Rev., 48:1289–1304, December 2004.

[9] J. Han. Magnetic fields in our Milky Way Galaxy and nearby galaxies. In A. G. Kosovichev, E. de Gouveia Dal Pino, and Y. Yan, editors, Solar and Astrophysical Dynamos and Magnetic Activity, volume 294 of IAU Symposium, pages 213–224, July 2013.

[10] C. L. Carilli and G. B. Taylor. Cluster Magnetic Fields. ARA&A, 40:319–348, 2002.

[11] R. Beck. Galactic and Extragalactic Magnetic Fields. In F. A. Aharonian, W. Hofmann, and F. Rieger, editors, American Institute of Physics Conference Series, volume 1085 of American Institute of Physics Conference Series, pages 83–96, December 2008.

[12] R. Beck. Cosmic Magnetic Fields: Observations and Prospects. In F. A. Aharonian, W. Hofmann, and F. M. Rieger, editors, American Institute of Physics Conference Series, volume 1381 of American Institute of Physics Conference Series, pages 117–136, September 2011.

[13] R. Beck. Magnetic fields in spiral galaxies. A&A Rev., 24:4, December 2015.

[14] J. L. Han. Observing Interstellar and Intergalactic Magnetic Fields. ARA&A, 55:111–157, August 2017.

[15] T. E. Clarke, P. P. Kronberg, and H. B¨ohringer. A New Radio-XRay Probe of Galaxy Cluster Magnetic Fields. ApJ, 547:L111–L114, February 2001.

[16] F. Govoni and L. Feretti. Magnetic Fields in Clusters of Galaxies. International Journal of Modern Physics D, 13:1549–1594, 2004.

[17] C. Pfrommer and T. A. Enßlin. Estimating galaxy cluster magnetic fields by the classical and hadronic minimum energy criterion. MNRAS, 352:76–90, July 2004.

[18] A. Bonafede, L. Feretti, M. Murgia, F. Govoni, G. Giovannini, and V. Vacca. Galaxy cluster magnetic fields from radio polarized emission. ArXiv e-prints, September 2010.

[19] M. Lemoine, G. Sigl, and P. Biermann. Supercluster Magnetic Fields and Anisotropy of Cosmic Rays above 10**(19) eV. ArXiv Astrophysics e-prints, March 1999.

[20] J. P. Vall´ee. Faraday Screen and Reversal of Rotation Measure in the Local Supercluster Plane. AJ, 124:1322–1327, September 2002.

[21] C. Isola and G. Sigl. Large scale magnetic fields and the number of cosmic ray sources above the Greisen-Zatsepin-Kuzmin cutoff. Phys. Rev. D, 66(8):083002, October 2002.

[22] Y. Xu, P. P. Kronberg, S. Habib, and Q. W. Dufton. A Faraday Rotation Search for Magnetic Fields in Large-scale Structure. ApJ, 637:19–26, January 2006.

[23] Shin’ichiro Ando and Alexander Kusenko. Evidence for Gamma-ray Halos Around Active Galactic Nuclei and the First Measurement of Intergalactic Magnetic Fields. ApJ, 722(1):L39–L44, October 2010.

[24] A. Neronov and I. Vovk. Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars. Science, 328:73, April 2010.

[25] W. Essey, S. Ando, and A. Kusenko. Determination of intergalactic magnetic fields from gamma ray data. Astroparticle Physics, 35:135– 139, October 2011.

[26] K. Takahashi, M. Mori, K. Ichiki, and S. Inoue. Lower Bounds on Intergalactic Magnetic Fields from Simultaneously Observed GeV-TeV Light Curves of the Blazar Mrk 501. ApJ, 744:L7, January 2012.

[27] K. Takahashi, M. Mori, K. Ichiki, S. Inoue, and H. Takami. Lower Bounds on Magnetic Fields in Intergalactic Voids from Long-term GeV-TeV Light Curves of the Blazar Mrk 421. ApJ, 771:L42, July 2013.

[28] W. Chen, J. H. Buckley, and F. Ferrer. Search for GeV γ -Ray Pair Halos Around Low Redshift Blazars. Physical Review Letters, 115(21):211103, November 2015.

[29] H. Tashiro and T. Vachaspati. Parity-odd correlators of diffuse gamma-rays and intergalactic magnetic fields. MNRAS, 448:299–306, March 2015.

[30] R. Plaga. Detecting intergalactic magnetic fields using time delays in pulses of γ-rays. Nature, 374:430–432, March 1995.

[31] F. Tavecchio, G. Ghisellini, L. Foschini, G. Bonnoli, G. Ghirlanda, and P. Coppi. The intergalactic magnetic field constrained by Fermi/Large Area Telescope observations of the TeV blazar 1ES0229+200. MNRAS, 406:L70–L74, July 2010.

[32] F. A. Aharonian, P. S. Coppi, and H. J. Voelk. Very high energy gamma rays from active galactic nuclei: Cascading on the cosmic background radiation fields and the formation of pair halos. ApJ, 423:L5–L8, March 1994.

[33] J. D. Bray and A. M. M. Scaife. An Upper Limit on the Strength of the Extragalactic Magnetic Field from Ultra-high-energy Cosmic-Ray Anisotropy. ApJ, 861(1):3, July 2018.

[34] L. Biermann. Uber den Ursprung der Magnetfelder auf Sternen und im ¨ interstellaren Raum (miteinem Anhang von A. Schl¨uter). Zeitschrift Naturforschung Teil A, 5:65, 1950.

[35] R. M. Kulsrud, R. Cen, J. P. Ostriker, and D. Ryu. The Protogalactic Origin for Cosmic Magnetic Fields. ApJ, 480:481–491, May 1997.

[36] N. Y. Gnedin, A. Ferrara, and E. G. Zweibel. Generation of the Primordial Magnetic Fields during Cosmological Reionization. ApJ, 539:505–516, August 2000.

[37] H. Hanayama, K. Takahashi, K. Kotake, M. Oguri, K. Ichiki, and H. Ohno. Biermann Mechanism in Primordial Supernova Remnant and Seed Magnetic Fields. ApJ, 633:941–945, November 2005.

[38] H. Xu, B. W. O’Shea, D. C. Collins, M. L. Norman, H. Li, and S. Li. The Biermann Battery in Cosmological MHD Simulations of Population III Star Formation. ApJ, 688:L57, December 2008.

[39] M. Ando, K. Doi, and H. Susa. Generation of Seed Magnetic Field Around First Stars: Effects of Radiation Force. ApJ, 716:1566–1572, June 2010.

[40] J.-B. Durrive and M. Langer. Intergalactic magnetogenesis at Cosmic Dawn by photoionization. MNRAS, 453:345–356, October 2015.

[41] R. E. Pudritz and J. Silk. The origin of magnetic fields and primordial stars in protogalaxies. ApJ, 342:650–659, July 1989.

[42] R. A. Daly and A. Loeb. A possible origin of galactic magnetic fields. ApJ, 364:451–455, December 1990.

[43] H. J. V¨olk and A. M. Atoyan. Early Starbursts and Magnetic Field Generation in Galaxy Clusters. ApJ, 541:88–94, September 2000.

[44] S. R. Furlanetto and A. Loeb. Intergalactic Magnetic Fields from Quasar Outflows. ApJ, 556:619–634, August 2001.

[45] S. R. Furlanetto and A. Loeb. Intergalactic Magnetic Fields from Quasar Outflows. In M. Gilfanov, R. Sunyeav, and E. Churazov, editors, Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology, page 450, 2002.

[46] H. Li, G. Lapenta, J. M. Finn, S. Li, and S. A. Colgate. Modeling the Large-Scale Structures of Astrophysical Jets in the Magnetically Dominated Limit. ApJ, 643:92–100, May 2006.

[47] Michael S. Turner and Lawrence M. Widrow. Inflation-produced, large-scale magnetic fields. Phys. Rev. D, 37:2743–2754, May 1988.

[48] Bharat Ratra. Cosmological “Seed” Magnetic Field from Inflation. ApJ, 391:L1, May 1992.

[49] A. D. Dolgov. Breaking of conformal invariance and electromagnetic field generation in the universe. Phys. Rev. D, 48:2499–2501, Sep 1993.

[50] J. Martin and J. Yokoyama. Generation of large scale magnetic fields in single-field inflation. J. Cosmology Astropart. Phys., 1:025, January 2008.

[51] T. Fujita, R. Namba, Y. Tada, N. Takeda, and H. Tashiro. Consistent generation of magnetic fields in axion inflation models. J. Cosmology Astropart. Phys., 5:054, May 2015.

[52] Craig J. Hogan. Magnetohydrodynamic effects of a first-order cosmological phase transition. Phys. Rev. Lett., 51:1488–1491, Oct 1983.

[53] Tanmay Vachaspati. Magnetic fields from cosmological phase transitions. Physics Letters B, 265(3-4):258–261, August 1991.

[54] D. Grasso and A. Riotto. On the nature of the magnetic fields generated during the electroweak phase transition. Physics Letters B, 418:258–265, February 1998.

[55] M. Gasperini, M. Giovannini, and G. Veneziano. Primordial magnetic fields from string cosmology. Phys. Rev. Lett., 75:3796–3799, Nov 1995.

[56] Massimo Giovannini. Magnetogenesis and the dynamics of internal dimensions. Phys. Rev. D, 62:123505, Nov 2000.

[57] K. Ichiki, K. Takahashi, H. Ohno, H. Hanayama, and N. Sugiyama. Cosmological Magnetic Field: A Fossil of Density Perturbations in the Early Universe. Science, 311:827–829, February 2006.

[58] Kumar Atmjeet, Isha Pahwa, T. R. Seshadri, and Kandaswamy Subramanian. Cosmological magnetogenesis from extra-dimensional gaussbonnet gravity. Phys. Rev. D, 89:063002, Mar 2014.

[59] K. Subramanian. Magnetic fields in the early Universe. Astronomische Nachrichten, 331:110, January 2010.

[60] A. Kandus, K. E. Kunze, and C. G. Tsagas. Primordial magnetogenesis. Phys. Rep., 505:1–58, August 2011.

[61] K. Subramanian. The origin, evolution and signatures of primordial magnetic fields. Reports on Progress in Physics, 79(7):076901, July 2016.

[62] Andres Aramburo Garcia, Kyrylo Bondarenko, Alexey Boyarsky, Dylan Nelson, Annalisa Pillepich, and Anastasia Sokolenko. Magnetization of the intergalactic medium in the IllustrisTNG simulations: the importance of extended, outflow-driven bubbles. arXiv e-prints, page arXiv:2011.11581, November 2020.

[63] E. N. Parker. Hydromagnetic Dynamo Models. ApJ, 122:293, September 1955.

[64] Axel Brandenburg and Kandaswamy Subramanian. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep., 417(1-4):1– 209, October 2005.

[65] M. J. Rees. The origin and cosmogonic implications of seed magnetic fields. QJRAS, 28:197–206, September 1987.

[66] A.-C. Davis, M. Lilley, and O. T¨ornkvist. Relaxing the bounds on primordial magnetic seed fields. Phys. Rev. D, 60(2):021301, July 1999.

[67] L. L. Kitchatinov and G. R¨udiger. Seed fields for galactic dynamos by the magnetorotational instability. A&A, 424:565–570, September 2004.

[68] R. Durrer and A. Neronov. Cosmological magnetic fields: their generation, evolution and observation. A&A Rev., 21:62, June 2013.

[69] Robi Banerjee and Karsten Jedamzik. Evolution of cosmic magnetic fields: From the very early Universe, to recombination, to the present. Phys. Rev. D, 70(12):123003, December 2004.

[70] C. Fedeli and L. Moscardini. Constraining primordial magnetic fields with future cosmic shear surveys. J. Cosmology Astropart. Phys., 11:055, November 2012.

[71] Kanhaiya L. Pandey and Shiv K. Sethi. Probing Primordial Magnetic Fields Using Lyα Clouds. ApJ, 762(1):15, January 2013.

[72] Tina Kahniashvili, Yurii Maravin, Aravind Natarajan, Nicholas Battaglia, and Alexander G. Tevzadze. Constraining Primordial Magnetic Fields through Large-scale Structure. ApJ, 770(1):47, June 2013.

[73] Kerstin E. Kunze and Eiichiro Komatsu. Constraints on primordial magnetic fields from the optical depth of the cosmic microwave background. J. Cosmology Astropart. Phys., 2015(6):027, Jun 2015.

[74] H. Tashiro and N. Sugiyama. Sunyaev-Zel’dovich power spectrum produced by primordial magnetic fields. MNRAS, 411:1284–1292, February 2011.

[75] Teppei Minoda, Kiyotomo Ichiki, and Hiroyuki Tashiro. Small-scale CMB anisotropies induced by the primordial magnetic fields. arXiv e-prints, page arXiv:2012.12542, December 2020.

[76] Teppei Minoda, Kenji Hasegawa, Hiroyuki Tashiro, Kiyotomo Ichiki, and Naoshi Sugiyama. Thermal Sunyaev-Zel’dovich effect in the intergalactic medium with primordial magnetic fields. Phys. Rev. D, 96:123525, Dec 2017.

[77] Teppei Minoda, Kenji Hasegawa, Hiroyuki Tashiro, Kiyotomo Ichiki, and Naoshi Sugiyama. Thermal Sunyaev-Zel’dovich Effect in the IGM due to Primordial Magnetic Fields. Galaxies, 6(4):143, December 2018.

[78] Teppei Minoda, Hiroyuki Tashiro, and Tomo Takahashi. Insight into primordial magnetic fields from 21-cm line observation with EDGES experiment. MNRAS, 488(2):2001–2005, September 2019.

[79] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and et al. Planck 2015 results. XIII. Cosmological parameters. A&A, 594:A13, September 2016.

[80] A. S. Monin and A. M. Iaglom. Statistical fluid mechanics: Mechanics of turbulence. Volume 2 /revised and enlarged edition/. 1975.

[81] L. D. Landau and E. M. Lifshitz. Statistical physics. Pt.1, Pt.2. 1980.

[82] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, and et al. Planck 2015 results. XIX. Constraints on primordial magnetic fields. A&A, 594:A19, September 2016.

[83] C. Fedeli and L. Moscardini. Constraining primordial magnetic fields with future cosmic shear surveys. J. Cosmology Astropart. Phys., 11:055, November 2012.

[84] S. Saga, H. Tashiro, and S. Yokoyama. Magnetic reheating. MNRAS, 474:L52–L55, February 2018.

[85] M. Giovannini. Growth rate of matter perturbations as a probe of large-scale magnetism. Phys. Rev. D, 84(6):063010, September 2011.

[86] K. Jedamzik, V. Katalini´c, and A. V. Olinto. Damping of cosmic magnetic fields. Phys. Rev. D, 57:3264–3284, March 1998.

[87] K. Subramanian and J. D. Barrow. Magnetohydrodynamics in the early universe and the damping of nonlinear Alfv´en waves. Phys. Rev. D, 58(8):083502, October 1998.

[88] Andrew Mack, Tina Kahniashvili, and Arthur Kosowsky. Microwave background signatures of a primordial stochastic magnetic field. Phys. Rev. D, 65(12):123004, June 2002.

[89] A. Friedmann. Uber die Kr¨ummung des Raumes. ¨ Zeitschrift fur Physik, 10:377–386, 1922.

[90] G. Lemaˆıtre. Un Univers homog`ene de masse constante et de rayon croissant rendant compte de la vitesse radiale des n´ebuleuses extragalactiques. Annales de la Soci´et´e Scientifique de Bruxelles, 47:49–59, 1927.

[91] E. Hubble. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Science, 15:168–173, March 1929.

[92] V. M. Slipher. The radial velocity of the Andromeda Nebula. Lowell Observatory Bulletin, 2:56–57, 1913.

[93] R. A. Alpher, H. Bethe, and G. Gamow. The Origin of Chemical Elements. Physical Review, 73:803–804, April 1948.

[94] C. Hayashi. Proton-Neutron Concentration Ratio in the Expanding Universe at the Stages preceding the Formation of the Elements. Progress of Theoretical Physics, 5:224–235, March 1950.

[95] R. A. Alpher and R. C. Herman. Neutron-Capture Theory of Element Formation in an Expanding Universe. Physical Review, 84:60–68, October 1951.

[96] A. A. Penzias and R. W. Wilson. A Measurement of Excess Antenna Temperature at 4080 Mc/s. ApJ, 142:419–421, July 1965.

[97] D. J. Fixsen. The Temperature of the Cosmic Microwave Background. ApJ, 707(2):916–920, December 2009.

[98] L. D. Landau and E. M. Lifshitz. Quantum mechanics. 1965.

[99] R. A. Sunyaev and Y. B. Zeldovich. Small-Scale Fluctuations of Relic Radiation. Ap&SS, 7:3–19, April 1970.

[100] P. J. E. Peebles and J. T. Yu. Primeval Adiabatic Perturbation in an Expanding Universe. ApJ, 162:815, December 1970.

[101] J. Silk. Cosmic Black-Body Radiation and Galaxy Formation. ApJ, 151:459, February 1968.

[102] Scott Dodelson. Modern cosmology. 2003.

[103] Alex Zucca, Yun Li, and Levon Pogosian. Constraints on primordial magnetic fields from Planck data combined with the South Pole Telescope CMB B -mode polarization measurements. Phys. Rev. D, 95(6):063506, March 2017.

[104] J. W. Henning, J. T. Sayre, C. L. Reichardt, P. A. R. Ade, A. J. Anderson, J. E. Austermann, J. A. Beall, A. N. Bender, B. A. Benson, L. E. Bleem, J. E. Carlstrom, C. L. Chang, H. C. Chiang, H. M. Cho, R. Citron, C. Corbett Moran, T. M. Crawford, A. T. Crites, T. de Haan, M. A. Dobbs, W. Everett, J. Gallicchio, E. M. George, A. Gilbert, N. W. Halverson, N. Harrington, G. C. Hilton, G. P. Holder, W. L. Holzapfel, S. Hoover, Z. Hou, J. D. Hrubes, N. Huang, J. Hubmayr, K. D. Irwin, R. Keisler, L. Knox, A. T. Lee, E. M. Leitch, D. Li, A. Lowitz, A. Manzotti, J. J. McMahon, S. S. Meyer, L. Mocanu, J. Montgomery, A. Nadolski, T. Natoli, J. P. Nibarger, V. Novosad, S. Padin, C. Pryke, J. E. Ruhl, B. R. Saliwanchik, K. K. Schaffer, C. Sievers, G. Smecher, A. A. Stark, K. T. Story, C. Tucker, K. Vanderlinde, T. Veach, J. D. Vieira, G. Wang, N. Whitehorn, W. L. K. Wu, and V. Yefremenko. Measurements of the Temperature and Emode Polarization of the CMB from 500 Square Degrees of SPTpol Data. ApJ, 852(2):97, Jan 2018.

[105] J. R. Shaw and A. Lewis. Massive neutrinos and magnetic fields in the early universe. Phys. Rev. D, 81(4):043517, February 2010.

[106] R. Durrer. Gauge Invariant Cosmological Perturbation Theory: A General Study and It’s Application to the Texture Scenario of Structure Formation. Fund. Cosmic Phys., 3:209–339, January 1994.

[107] James M. Bardeen. Gauge-invariant cosmological perturbations. Phys. Rev. D, 22(8):1882–1905, October 1980.

[108] Wayne Hu and Martin White. CMB anisotropies: Total angular momentum method. Phys. Rev. D, 56(2):596–615, July 1997.

[109] K. Jedamzik, V. Katalini´c, and A. V. Olinto. Damping of cosmic magnetic fields. Phys. Rev. D, 57:3264–3284, March 1998.

[110] Antony Lewis, Anthony Challinor, and Anthony Lasenby. Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J., 538:473–476, 2000.

[111] A. Lewis and S. Bridle. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys. Rev. D, 66(10):103511, November 2002.

[112] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, E. Battaner, K. Benabed, A. Benoˆıt, A. Benoit-L´evy, J. P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, A. Bonaldi, L. Bonavera, J. R. Bond, J. Borrill, F. R. Bouchet, M. Bucher, C. Burigana, R. C. Butler, E. Calabrese, J. F. Cardoso, A. Catalano, A. Chamballu, H. C. Chiang, J. Chluba, P. R. Christensen, S. Church, D. L. Clements, S. Colombi, L. P. L. Colombo, C. Combet, F. Couchot, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, F. X. D´esert, J. M. Diego, K. Dolag, H. Dole, S. Donzelli, O. Dor´e, M. Douspis, A. Ducout, X. Dupac, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, J. Fergusson, F. Finelli, E. Florido, O. Forni, M. Frailis, A. A. Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga, M. Giard, Y. Giraud-H´eraud, E. Gjerløw, J. Gonz´alez-Nuevo, K. M. G´orski, S. Gratton, A. Gregorio, A. Gruppuso, J. E. Gudmundsson, F. K. Hansen, D. Hanson, D. L. Harrison, G. Helou, S. HenrotVersill´e, C. Hern´andez-Monteagudo, D. Herranz, S. R. Hildebrand t, E. Hivon, M. Hobson, W. A. Holmes, A. Hornstrup, W. Hovest, K. M. Huffenberger, G. Hurier, A. H. Jaffe, T. R. Jaffe, W. C. Jones, M. Juvela, E. Keih¨anen, R. Keskitalo, J. Kim, T. S. Kisner, J. Knoche, M. Kunz, H. Kurki-Suonio, G. Lagache, A. L¨ahteenm¨aki, J. M. Lamarre, A. Lasenby, M. Lattanzi, C. R. Lawrence, J. P. Leahy, R. Leonardi, J. Lesgourgues, F. Levrier, M. Liguori, P. B. Lilje, M. Linden-Vørnle, M. L´opez-Caniego, P. M. Lubin, J. F. Mac´ıasP´erez, G. Maggio, D. Maino, N. Mand olesi, A. Mangilli, M. Maris, P. G. Martin, E. Mart´ınez-Gonz´alez, S. Masi, S. Matarrese, P. McGehee, P. R. Meinhold, A. Melchiorri, L. Mendes, A. Mennella, M. Migliaccio, S. Mitra, M. A. Miville-Deschˆenes, D. Molinari, A. Moneti, L. Montier, G. Morgante, D. Mortlock, A. Moss, D. Munshi, J. A. Murphy, P. Naselsky, F. Nati, P. Natoli, C. B. Netterfield, H. U. Nørgaard-Nielsen, F. Noviello, D. Novikov, I. Novikov, N. Oppermann, C. A. Oxborrow, F. Paci, L. Pagano, F. Pajot, D. Paoletti, F. Pasian, G. Patanchon, O. Perdereau, L. Perotto, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski, E. Pointecouteau, G. Polenta, L. Popa, G. W. Pratt, G. Pr´ezeau, S. Prunet, J. L. Puget, J. P. Rachen, R. Rebolo, M. Reinecke, M. Remazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Rossetti, G. Roudier, J. A. Rubi˜no-Mart´ın, B. Ruiz-Granados, B. Rusholme, M. Sandri, D. Santos, M. Savelainen, G. Savini, D. Scott, M. D. Seiffert, E. P. S. Shellard, M. Shiraishi, L. D. Spencer, V. Stolyarov, R. Stompor, R. Sudiwala, R. Sunyaev, D. Sutton, A. S. SuurUski, J. F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, M. Tristram, M. Tucci, J. Tuovinen, G. Umana, L. Valenziano, J. Valiviita, B. Van Tent, P. Vielva, F. Villa, L. A. Wade, B. D. Wandelt, I. K. Wehus, D. Yvon, A. Zacchei, and A. Zonca. Planck 2015 results. XIX. Constraints on primordial magnetic fields. A&A, 594:A19, September 2016.

[113] R. Keisler, S. Hoover, N. Harrington, J. W. Henning, P. A. R. Ade, K. A. Aird, J. E. Austermann, J. A. Beall, A. N. Bender, B. A. Benson, L. E. Bleem, J. E. Carlstrom, C. L. Chang, H. C. Chiang, H. M. Cho, R. Citron, T. M. Crawford, A. T. Crites, T. de Haan, M. A. Dobbs, W. Everett, J. Gallicchio, J. Gao, E. M. George, A. Gilbert, N. W. Halverson, D. Hanson, G. C. Hilton, G. P. Holder, W. L. Holzapfel, Z. Hou, J. D. Hrubes, N. Huang, J. Hubmayr, K. D. Irwin, L. Knox, A. T. Lee, E. M. Leitch, D. Li, D. Luong-Van, D. P. Marrone, J. J. McMahon, J. Mehl, S. S. Meyer, L. Mocanu, T. Natoli, J. P. Nibarger, V. Novosad, S. Padin, C. Pryke, C. L. Reichardt, J. E. Ruhl, B. R. Saliwanchik, J. T. Sayre, K. K. Schaffer, E. Shirokoff, G. Smecher, A. A. Stark, K. T. Story, C. Tucker, K. Vanderlinde, J. D. Vieira, G. Wang, N. Whitehorn, V. Yefremenko, and O. Zahn. Measurements of Sub-degree B-mode Polarization in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data. ApJ, 807(2):151, July 2015.

[114] Tina Kahniashvili, Axel Brandenburg, Ruth Durrer, Alexander G. Tevzadze, and Winston Yin. Scale-invariant helical magnetic field evolution and the duration of inflation. J. Cosmology Astropart. Phys., 2017(12):002, December 2017.

[115] Ramkishor Sharma, Kandaswamy Subramanian, and T. R. Seshadri. Generation of helical magnetic field in a viable scenario of inflationary magnetogenesis. Phys. Rev. D, 97(8):083503, April 2018.

[116] Tomohiro Fujita and Ruth Durrer. Scale-invariant helical magnetic fields from inflation. J. Cosmology Astropart. Phys., 2019(9):008, September 2019.

[117] Teerthal Patel, Hiroyuki Tashiro, and Yuko Urakawa. Resonant magnetogenesis from axions. J. Cosmology Astropart. Phys., 2020(1):043, January 2020.

[118] K. Subramanian and J. D. Barrow. Magnetohydrodynamics in the early universe and the damping of nonlinear Alfv´en waves. Phys. Rev. D, 58(8):083502, October 1998.

[119] S. K. Sethi and K. Subramanian. Primordial magnetic fields in the post-recombination era and early reionization. MNRAS, 356:778–788, January 2005.

[120] J. Chluba, D. Paoletti, F. Finelli, and J. A. Rubi˜no-Mart´ın. Effect of primordial magnetic fields on the ionization history. MNRAS, 451:2244–2250, August 2015.

[121] Shohei Saga, Hiroyuki Tashiro, and Shuichiro Yokoyama. Magnetic reheating. MNRAS, 474(1):L52–L55, February 2018.

[122] Karsten Jedamzik, Viˇsnja Katalini´c, and Angela V. Olinto. Limit on Primordial Small-Scale Magnetic Fields from Cosmic Microwave Background Distortions. Phys. Rev. Lett., 85(4):700–703, July 2000.

[123] Kerstin E. Kunze and Eiichiro Komatsu. Constraining primordial magnetic fields with distortions of the black-body spectrum of the cosmic microwave background: pre- and post-decoupling contributions. J. Cosmology Astropart. Phys., 2014(1):009, Jan 2014.

[124] Maresuke Shiraishi, Daisuke Nitta, Shuichiro Yokoyama, Kiyotomo Ichiki, and Keitaro Takahashi. Cosmic microwave background bispectrum of vector modes induced from primordial magnetic fields. Phys. Rev. D, 82(12):121302, Dec 2010.

[125] Maresuke Shiraishi, Daisuke Nitta, Shuichiro Yokoyama, Kiyotomo Ichiki, and Keitaro Takahashi. Cosmic microwave background bispectrum of tensor passive modes induced from primordial magnetic fields. Phys. Rev. D, 83(12):123003, Jun 2011.

[126] I. Wasserman. On the origins of galaxies, galactic angular momenta, and galactic magnetic fields. ApJ, 224:337–343, September 1978.

[127] E.-J. Kim, A. V. Olinto, and R. Rosner. Generation of Density Perturbations by Primordial Magnetic Fields. ApJ, 468:28, September 1996.

[128] M. Fukugita and M. Kawasaki. Reionization during Hierarchical Clustering in a Universe Dominated by Cold Dark Matter. MNRAS, 269:563, August 1994.

[129] F. H. Shu. The physics of astrophysics. Volume II: Gas dynamics. 1992.

[130] S. Seager, D. D. Sasselov, and D. Scott. How Exactly Did the Universe Become Neutral? ApJS, 128:407–430, June 2000.

[131] S. Seager, D. D. Sasselov, and D. Scott. A New Calculation of the Recombination Epoch. ApJ, 523:L1–L5, September 1999.

[132] R. A. Sunyaev and Y. B. Zeldovich. Distortions of the Background Radiation Spectrum. Nature, 223:721–722, August 1969.

[133] Y. B. Zeldovich and R. A. Sunyaev. The Interaction of Matter and Radiation in a Hot-Model Universe. Ap&SS, 4:301–316, July 1969.

[134] J. E. Carlstrom, G. P. Holder, and E. D. Reese. Cosmology with the Sunyaev-Zel’dovich Effect. ARA&A, 40:643–680, 2002.

[135] M. Hasselfield, M. Hilton, T. A. Marriage, G. E. Addison, L. F. Barrientos, N. Battaglia, E. S. Battistelli, J. R. Bond, D. Crichton, S. Das, M. J. Devlin, S. R. Dicker, J. Dunkley, R. D¨unner, J. W. Fowler, M. B. Gralla, A. Hajian, M. Halpern, A. D. Hincks, R. Hlozek, J. P. Hughes, L. Infante, K. D. Irwin, A. Kosowsky, D. Marsden, F. Menanteau, K. Moodley, M. D. Niemack, M. R. Nolta, L. A. Page, B. Partridge, E. D. Reese, B. L. Schmitt, N. Sehgal, B. D. Sherwin, J. Sievers, C. Sif´on, D. N. Spergel, S. T. Staggs, D. S. Swetz, E. R. Switzer, R. Thornton, H. Trac, and E. J. Wollack. The Atacama Cosmology Telescope: Sunyaev-Zel’dovich selected galaxy clusters at 148 GHz from three seasons of data. J. Cosmology Astropart. Phys., 7:008, July 2013.

[136] D. C. Pan, M. S. Vogeley, F. Hoyle, Y.-Y. Choi, and C. Park. Cosmic voids in Sloan Digital Sky Survey Data Release 7. MNRAS, 421:926– 934, April 2012.

[137] S. R. Furlanetto, S. P. Oh, and F. H. Briggs. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe. Phys. Rep., 433:181–301, October 2006.

[138] S. A. Wouthuysen. On the excitation mechanism of the 21-cm (radiofrequency) interstellar hydrogen emission line. AJ, 57:31–32, 1952.

[139] G. B. Field. The Spin Temperature of Intergalactic Neutral Hydrogen. ApJ, 129:536, May 1959.

[140] Jonathan R. Pritchard and Abraham Loeb. 21 cm cosmology in the 21st century. Reports on Progress in Physics, 75(8):086901, August 2012.

[141] Andrei Mesinger, Steven Furlanetto, and Renyue Cen. 21CMFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal. MNRAS, 411(2):955–972, February 2011.

[142] Judd D. Bowman, Alan E. E. Rogers, Raul A. Monsalve, Thomas J. Mozdzen, and Nivedita Mahesh. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature, 555(7694):67–70, March 2018.

[143] S. J. Clark, B. Dutta, Y. Gao, Y.-Z. Ma, and L. E. Strigari. 21 cm limits on decaying dark matter and primordial black holes. Phys. Rev. D, 98(4):043006, August 2018.

[144] A. Hektor, G. H¨utsi, L. Marzola, M. Raidal, V. Vaskonen, and H. Veerm¨ae. Constraining primordial black holes with the EDGES 21-cm absorption signal. Phys. Rev. D, 98(2):023503, July 2018.

[145] A. Mitridate and A. Podo. Bounds on Dark Matter decay from 21 cm line. J. Cosmology Astropart. Phys., 5:069, May 2018.

[146] H.-C. Cheng, L. Li, and R. Zheng. Coscattering/coannihilation dark matter in a fraternal twin Higgs model. Journal of High Energy Physics, 9:98, September 2018.

[147] G. D’Amico, P. Panci, and A. Strumia. Bounds on Dark-Matter Annihilations from 21-cm Data. Phys. Rev. Lett., 121(1):011103, July 2018.

[148] M. Safarzadeh, E. Scannapieco, and A. Babul. A Limit on the Warm Dark Matter Particle Mass from the Redshifted 21 cm Absorption Line. ApJ, 859:L18, June 2018.

[149] S. Yoshiura, K. Takahashi, and T. Takahashi. Impact of EDGES 21- cm global signal on the primordial power spectrum. Phys. Rev. D, 98(6):063529, September 2018.

[150] S. K. Sethi and K. Subramanian. Primordial magnetic fields in the post-recombination era and early reionization. MNRAS, 356:778–788, January 2005.

[151] H. Tashiro and N. Sugiyama. Probing primordial magnetic fields with the 21-cm fluctuations. MNRAS, 372:1060–1068, November 2006.

[152] M. Shiraishi, H. Tashiro, and K. Ichiki. 21A cm fluctuations from ˆ primordial magnetic fields. Phys. Rev. D, 89(10):103522, May 2014.

[153] Kerstin E. Kunze. 21 cm line signal from magnetic modes. J. Cosmology Astropart. Phys., 2019(1):033, January 2019.

[154] D. R. G. Schleicher, R. Banerjee, and R. S. Klessen. Influence of Primordial Magnetic Fields on 21 cm Emission. ApJ, 692:236–245, February 2009.

[155] S. K. Sethi and K. Subramanian. Primordial magnetic fields and the HI signal from the epoch of reionization. J. Cosmology Astropart. Phys., 11:021, November 2009.

[156] D. R. G. Schleicher, R. Banerjee, and R. S. Klessen. Reionization: A probe for the stellar population and the physics of the early universe. Phys. Rev. D, 78(8):083005, October 2008.

[157] J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature, 555:67–70, March 2018.

[158] A. Blanchard and J. Schneider. Gravitational lensing effect on the fluctuations of the cosmic background radiation. A&A, 184(1-2):1–6, October 1987.

[159] J. P. Ostriker and E. T. Vishniac. Generation of Microwave Background Fluctuations from Nonlinear Perturbations at the ERA of Galaxy Formation. ApJ, 306:L51, July 1986.

[160] Y. Shibusawa, K. Ichiki, and K. Kadota. The influence of primordial magnetic fields on the spherical collapse model in cosmology. J. Cosmology Astropart. Phys., 8:017, August 2014.

[161] J. Richard Shaw and Antony Lewis. Constraining primordial magnetism. Phys. Rev. D, 86(4):043510, August 2012.

[162] Kandaswamy Subramanian and John D. Barrow. Microwave Background Signals from Tangled Magnetic Fields. Phys. Rev. Lett., 81(17):3575–3578, October 1998.

[163] Massimo Giovannini. Tight coupling expansion and fully inhomogeneous magnetic fields. Phys. Rev. D, 74(6):063002, September 2006.

[164] Teppei Minoda, Kenji Hasegawa, Hiroyuki Tashiro, Kiyotomo Ichiki, and Naoshi Sugiyama. Thermal Sunyaev-Zel’dovich effect in the intergalactic medium with primordial magnetic fields. Phys. Rev. D, 96(12):123525, Dec 2017.

[165] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. 1972.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る