リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Detection and characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from retail raw foods and children with diarrhea in Khanh Hoa province, Vietnam」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Detection and characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from retail raw foods and children with diarrhea in Khanh Hoa province, Vietnam

Le Quoc Phong 大阪府立大学 DOI:info:doi/10.24729/00017709

2022.07.05

概要

Antibiotics, the most important medical achievement in the last 50 years, are hailed as a miracle in modern medicine due to their ability in fighting bacterial infections, then saving lives. The first antibiotic, namely penicillin was found in 1928 (Fleming, 1929). Since then, various antibiotics or antimicrobials have been discovered, synthesized and deposited into the pharmaceutical market. As of September 1st, 2019, there are 50 existing antibiotics in the clinical pipeline (WHO, 2019a). These antibiotics were arranged into different classes such as aminoglycosides, carbapenems, cephalosporins, quinolones, glycopeptides, macrolides, monobactams, oxazolidinones, penicillins, polypeptides, rifamycins, sulfonamides, streptogramins, tetracyclines, polymyxins. However, many antibiotics are no longer effective to many pathogenic bacteria since the rise of antimicrobial resistance (AMR) (WHO, 2019b). AMR has become one of the greatest challenges in the 21st century. In recent years, AMR is a really major public health issue worldwide. It increased morbidity, mortality as well as healthcare costs due to longer hospitalization and multiple antimicrobial therapies needed (Bowe, 2014; Prestinaci et al., 2015). AMR currently causes at least 700.000 deaths yearly and was predicted to be able to result in 50 million deaths each year by 2050 unless effective actions are taken (WHO, 2019b). Furthermore, newly developed antibiotics were almost very few for a long period even though there is still a clear mismatch between the few newly approved antibiotics and the current priority pathogens list as published by the World Health Organization (WHO), especially for bacteria producing metallo-β-lactamases which can catalyze the hydrolysis of a broad range of β-lactam antibiotics including carbapenems (WHO, 2017b, 2019a). AMR occurs naturally, but the massive misuse of antimicrobials in human medicine is one of the leading factors in AMR development. Recently, the ongoing COVID-19 (Corona Virus Disease 2019 caused by SARS-CoV-2) pandemic has been causing a high number of patients hospitalized and some of them were admitted to intensive care units (ICU) with vulnerable for secondary infections, resulting in an increase use of antibiotics for COVID-19 patients in healthcare settings which might contribute to the misuse of antibiotics and foster the increase the AMR burden in many countries (Manohar et al., 2020). Besides, overuse and misuse of antimicrobials in veterinary medicine, livestock, and aquaculture in many countries including Vietnam have also contributed to the emergence and spread of AMR bacteria in different environments and various backbones (Pham-Duc et al., 2019; Shea, 2003). Bacteria in the animal gut can develop resistance to the used antibiotics and the resistant bacteria may transmit to humans via contact, consumption, or handling of contaminated animals or animal-originated foods. Therefore, food-producing animals and foods of animal origin could be served as sources and reservoirs for AMR bacteria (Le et al., 2015; Pérez-Rodríguez and Mercanoglu Taban, 2019).

Among the antibiotic groups in the pipeline, the carbapenems, cephalosporins, monobactams, and penicillins are subclasses of β-lactams characterizing with a β-lactam ring structure. β-lactam antibiotics target to interrupt the cell-wall synthesis of bacteria by disrupting peptidoglycan biosynthesis through covalent linking to penicillin-binding proteins (WHO, 2019a). β-lactams, one of the most vital groups of antimicrobials, are used popularly in human medicine. They have been extensively used in human medicine with approximately 50% of all prescribed antibiotics and account for 60% of all antimicrobial use by weight worldwide (Livermore and Woodford, 2006; Pitout, 2012; Rahman et al., 2018). Among antibiotics of the β-lactam group, cephalosporins (3rd, 4th and 5th generations) were classified as “Highest Priority” of antimicrobials categorized as “Critically Important” in The WHO List of Critically Important Antimicrobials for Human Medicine (WHO, 2017a). However, the resistance to these important antibiotics has been increasingly recognized worldwide, including Vietnam (Bergšpica et al., 2020; Le et al., 2015). There are different resistance mechanisms in Gram-negative bacteria against β-lactams. Among them, the production of β- lactamase was the most popular mechanism of resistance in Gram-negative bacteria. Currently, more than 500 different β-lactamases have been reported (Rahman et al., 2018). They are grouped into four classes including A, B, C, and D based on Ambler classification. Particularly, class B is zinc-metallo-β-lactamase, whereas classes A, C, and D are characterized β-lactamases having serine at the active site (Rahman et al., 2018). Among βlactamases, extended-spectrum β-lactamases (ESBLs) are specifically concerned due to their broad-spectrum activity to hydrolyze oxyimino cephalosporins (cephalosporin 3rd and 4th generations) and monobactams but excluding cephamycin (cefoxitin) and carbapenems (Rahman et al., 2018). Until now, various types of ESBLs have been reported. Out of them, TEM, SHV, and CTX-M enzymes are the most popular in Enterobacteriaceae (Arpin et al., 2009). Variants of TEM and SHV were predominant ESBLs during the 1990s, whereas CTXM type ESBLs have recently been becoming the most globally dominant genotypes (Adamski et al., 2015). To date, there have been more than 172 variants of CTX-M types that are clustered into 5 major groups based on their sequence homologies including CTX-M-1, -2, -8, -9, and -25 (Ramadan et al., 2019). Among variants in CTX-M groups, the CTX-M-14 (belong to CTX-M-9 group) and CTX-M-15 (belong to CTX-M-1 group) are the most common ESBL identified in clinical isolates worldwide (Lahlaoui et al., 2014). Consequently, the increase of ESBL-producers such as Enterobacteriaceae has rendered many important antimicrobials belonging to the β-lactam group, even the latest cephalosporins, ineffective. Especially, those bacteria cause hard-to-treat or even untreatable infections with exiting antimicrobials are posing great threats to public health and changing the landscape of healthcare. Worryingly, ESBL-producing bacteria such as Enterobacteriaceae or the ESBL genes themselves, might be transmitted to humans via various reservoirs such as livestock, companioned animals, wild animals, sewage water, intercontinental travel, etc. (Fig. I) (Woerther et al., 2013).

In a context of increasing AMR problem with the popular of multidrug-resistant (MDR) bacteria especially carbapenemase-producing pathogens as well as the absence of newly developed antimicrobials against these “superbugs” and because of limited therapeutic options with antimicrobials in the current pipeline, the polymyxins colistin has been reintroduced as a last-line antibiotic despite their toxicity and uncertain dosing (Andrade et al., 2020; WHO, 2017a). The mechanism of colistin against Gram-negative bacteria is through binding to the lipid A – a key component of lipopolysaccharide (LPS) of the outer membrane, resulting in the leaking of cell contents, and subsequently, cell death (Dijkmans et al., 2015). This antibiotic was first discovered in 1949 in Japan from the Bacillus polymyxa and was available for clinical use in 1959 (Reed et al., 2001). However, colistin had gradually been less used or even abandoned in human medicine worldwide since the early 1980s due to its severe side effects as nephrotoxicity (Brown et al., 1970). Meanwhile, in veterinary medicine, colistin has been used for decades for both prophylactic purpose and treatment of infections. For example, colistin was widely used in pig production to treat diarrhea caused by E. coli or used as a growth promoter in the poultry industry (Kempf et al., 2016; Shen et al., 2016). Unfortunately, the intensive use of colistin in agricultural production and veterinary medicine might contribute to the emergence of colistin resistance. Before 2015, the mechanism of colistin resistance was mainly assigned to chromosomal-mediated genes such as phoPQ, pmrAB, and mgrB (Olaitan et al., 2014). However, in 2015, a plasmid-mediated colistin resistance gene, namely mobile colistin resistance (mcr)-1, was first described in E. coli from livestock and patients in China (Liu et al., 2016). After that, different variants from mcr-1 to mcr-10 have been reported consecutively (Wang et al., 2020). The colistin resistance mechanism of mcr genes is as target modification of colistin. The mcr gene encodes phosphoethanolamine (PEA)-lipid A transferase that transfer PEA to the lipid A creating an altered lipid A of the outer membrane of Gram-negative bacteria that lowers the affinity of colistin, then reduces activity of this antibiotic (Fig. II) (Aghapour et al., 2019; Hinchliffe et al., 2017). Since discovery of mcr gene, colistin resistance brought strong attention to scientific society because the mcr-1 gene was plasmid-mediated and possible to horizontally transfer between bacteria and even from animals to humans (Luo et al., 2020; MalhotraKumar et al., 2016). To date, ten variants of mcr genes (mcr-1 to mcr-10) have been reported worldwide in various bacterial species and different sources such as animals, foods, the environment and humans (Hussein et al., 2021). The wide dissemination of mcr genes might pose a great threat to public health due to their threatening to the clinical use of colistin, the last-line antibiotic for severe infections caused by MDR bacteria (Luo et al., 2020).

この論文で使われている画像

参考文献

Adamski, C.J., Cardenas, A.M., Brown, N.G., Horton, L.B., Sankaran, B., Prasad, B.V., Gilbert, H.F., Palzkill, T., 2015. Molecular basis for the catalytic specificity of the CTX-M extended-spectrum β-lactamases. Biochemistry 54, 447-457.

Aghapour, Z., Gholizadeh, P., Ganbarov, K., Bialvaei, A.Z., Mahmood, S.S., Tanomand, A., Yousefi, M., Asgharzadeh, M., Yousefi, B., Kafil, H.S., 2019. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist 12, 965.

Andrade, F.F., Silva, D., Rodrigues, A., Pina-Vaz, C., 2020. Colistin update on its mechanism of action and resistance, present and future challenges. Microorganisms 8, 1716.

Arpin, C., Quentin, C., Grobost, F., Cambau, E., Robert, J., Dubois, V., Coulange, L., Andre, C., 2009. Nationwide survey of extended-spectrum β-lactamase-producing Enterobacteriaceae in the French community setting. J Antimicrob Chemother 63, 1205-1214.

Baniga, Z., Hounmanou, Y.M.G., Kudirkiene, E., Kusiluka, L.J.M., Mdegela, R.H., Dalsgaard, A., 2020. Genome-based analysis of extended-spectrum β-lactamase-producing Escherichia coli in the aquatic environment and Nile Perch (Lates niloticus) of Lake Victoria, Tanzania. Front Microbiol 11, 108.

Bergšpica, I., Kaprou, G., Alexa, E.A., Prieto, M., Alvarez-Ordóñez, A., 2020. Extended spectrum β-lactamase (ESBL) producing Escherichia coli in pigs and pork meat in the European Union. Antibiotics 9, 678.

Bevan, E.R., Jones, A.M., Hawkey, P.M., 2017. Global epidemiology of CTX-M βlactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 72, 2145-2155.

Biedenbach, D.J., Bouchillon, S.K., Hoban, D.J., Hackel, M., Phuong, D.M., Nga, T.T., Phuong, N.T., Phuong, T.T., Badal, R.E., 2014. Antimicrobial susceptibility and extendedspectrum beta-lactamase rates in aerobic gram-negative bacteria causing intra-abdominal infections in Vietnam: report from the Study for Monitoring Antimicrobial Resistance Trends (SMART 2009-2011). Diagn Microbiol Infect Dis 79, 463-467.

Binh, V.N., Dang, N., Anh, N.T.K., Ky, L.X., Thai, P.K., 2018. Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy. Chemosphere 197, 438-450.

Bonnet, R., 2004. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48, 1-14.

Bowe, W.P., 2014. Antibiotic resistance and acne: where we stand and what the future holds. Curr Opin Pharmacol. 13, s66-70.

Brown, J., Dorman, D., Roy, L., 1970. Acute renal failure due to overdosage of colistin. Wiley Online Library.

Bui, T.M.H., Hirai, I., Ueda, S., Bui, T.K.N., Hamamoto, K., Toyosato, T., Le, D.T., Yamamoto, Y., 2015. Carriage of Escherichia coli producing CTX-M-type extendedspectrum β-lactamase in healthy Vietnamese individuals. Antimicrob Agents Chemother 59, 6611-6614.

Cabrera-Sosa, L., Ochoa, T.J., 2020. Escherichia coli diarrhea, Hunter's Tropical Medicine and Emerging Infectious Diseases. Elsevier, pp. 481-485.

Cantón, R., González-Alba, J.M., Galán, J.C., 2012. CTX-M Enzymes: Origin and diffusion. Front Microbiol 3, 110-110.

Canton, R., Ruiz-Garbajosa, P., 2011. Co-resistance: an opportunity for the bacteria and resistance genes. Curr Opin Pharmacol 11, 477-485.

Carlos, C., Pires, M.M., Stoppe, N.C., Hachich, E.M., Sato, M.I.Z., Gomes, T.A.T., Amaral, L.A., Ottoboni, L.M.M., 2010. Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC Microbiol 10, 161.

Carroll, L.M., Gaballa, A., Guldimann, C., Sullivan, G., Henderson, L.O., Wiedmann, M., 2019. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype typhimurium isolate. mBio 10, e00853- 00819.

Caspar, Y., Maillet, M., Pavese, P., Francony, G., Brion, J.-P., Mallaret, M.-R., Bonnet, R., Robin, F., Beyrouthy, R., Maurin, M., 2017. mcr-1 colistin resistance in ESBL-producing Klebsiella pneumoniae, France. Emerg Infect Dis 23, 874-876.

CDC, 2017. Vietnam Tracks Multi-drug Resistant Bacteria. https://www.cdc.gov/globalhealth/healthprotection/fieldupdates/winter-2017/vietnam-tracksbacteria.html. Accessed on 24th June 2021.

Chakraborty, A., Saralaya, V., Adhikari, P., Shenoy, S., Baliga, S., Hegde, A., 2015.

Characterization of Escherichia coli phylogenetic groups associated with extraintestinal infections in South Indian population. Ann Med Health Sci Res 5, 241-246.

Clemente, L., Manageiro, V., Correia, I., Amaro, A., Albuquerque, T., Themudo, P., Ferreira, E., Canica, M., 2019. Revealing mcr-1-positive ESBL-producing Escherichia coli strains among Enterobacteriaceae from food-producing animals (bovine, swine and poultry) and meat (bovine and swine), Portugal, 2010-2015. Int J Food Microbiol 296, 37-42.

Clermont, O., Bonacorsi, S., Bingen, E., 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66, 4555-4558.

CLSI, 2018. Performance standards for antimicrobial susceptibility testing, Twenty-eight information supplement, CLSI Document M100-S28. Wayne, PA: CLSI

Copur Cicek, A., Saral, A., Ozad Duzgun, A., Yasar, E., Cizmeci, Z., Ozlem Balci, P., Sari, F., Firat, M., Altintop, Y.A.Y., Ak, S., Caliskan, A., Yildiz, N., Sancaktar, M., Esra Budak, E., Erturk, A., Birol Ozgumus, O., Sandalli, C., 2013. Nationwide study of Escherichia coli producing extended-spectrum β-lactamases TEM, SHV and CTX-M in Turkey. J Antibiot (Tokyo) 66, 647-650.

Coque, T.M., Baquero, F., Canton, R., 2008. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill 13, 19044.

Croxen, M.A., Law, R.J., Scholz, R., Keeney, K.M., Wlodarska, M., Finlay, B.B., 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26, 822-880.

Cuong, N.V., Nhung, N.T., Nghia, N.H., Mai Hoa, N.T., Trung, N.V., Thwaites, G., Carrique-Mas, J., 2016. Antimicrobial consumption in medicated feeds in Vietnamese pig and poultry production. Ecohealth 13, 490-498.

Cuong, N.V., Phu, D.H., Van, N.T.B., Dinh Truong, B., Kiet, B.T., Hien, B.V., Thu, H.T.V., Choisy, M., Padungtod, P., Thwaites, G., 2019. High-resolution monitoring of antimicrobial consumption in Vietnamese small-scale chicken farms highlights discrepancies between study metrics. Front Vet Sci 6, 174.

D'Andrea, M.M., Arena, F., Pallecchi, L., Rossolini, G.M., 2013. CTX-M-type β-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol 303, 305-317.

Dalmolin, T.V., de Lima-Morales, D., Barth, A.L., 2018. Plasmid-mediated colistin resistance: what do we know?. J Infectiology 1, 16-22.

Dang, S.T.T., Bortolaia, V., Tran, N.T., Le, H.Q., Dalsgaard, A., 2018. Cephalosporinresistant Escherichia coli isolated from farm workers and pigs in northern Vietnam. Trop Med Int Health 23, 415-424.

Dijkmans, A.C., Wilms, E.B., Kamerling, I.M., Birkhoff, W., Ortiz-Zacarías, N.V., van Nieuwkoop, C., Verbrugh, H.A., Touw, D.J., 2015. Colistin: revival of an old polymyxin antibiotic. Ther Drug Monit 37, 419-427.

Duong, H.P., Mong Hiep, T.T., Hoang, D.T., Janssen, F., Lepage, P., De Mol, P., Blumental, S., Ismaili, K., 2015. Practical problems related to the management of febrile urinary tract infection in Vietnamese children. Arch Pediatr 22, 848-852.

Eichhorn, I., Feudi, C., Wang, Y., Kaspar, H., Fessler, A.T., Lubke-Becker, A., Michael, G.B., Shen, J., Schwarz, S., 2018. Identification of novel variants of the colistin resistance gene mcr-3 in Aeromonas spp. from the national resistance monitoring programme GERMVet and from diagnostic submissions. J Antimicrob Chemother 73, 1217-1221. Filioussis, G., Kachrimanidou, M., Christodoulopoulos, G., Kyritsi, M., Hadjichristodoulou, C., Adamopoulou, M., Tzivara, A., Kritas, S.K., Grinberg, A., 2020. Bovine mastitis caused by a multidrug-resistant, mcr-1-positive (colistin-resistant), extended-spectrum betalactamase-producing Escherichia coli clone on a Greek dairy farm. J Dairy Sci 103, 852-857.

Fleming, A., 1929. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br J Exp Pathol 10, 226-236.

Garcia, V., Garcia-Menino, I., Mora, A., Flament-Simon, S.C., Diaz-Jimenez, D., Blanco, J.E., Alonso, M.P., Blanco, J., 2018. Co-occurrence of mcr-1, mcr-4 and mcr-5 genes in multidrug-resistant ST10 enterotoxigenic and shiga toxin-producing Escherichia coli in Spain (2006-2017). Int J Antimicrob Agents 52, 104-108.

Gundran, R.S., Cardenio, P.A., Villanueva, M.A., Sison, F.B., Benigno, C.C., Kreausukon, K., Pichpol, D., Punyapornwithaya, V., 2019. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines. BMC Vet Res 15, 227.

Haenni, M., Metayer, V., Gay, E., Madec, J.Y., 2016. Increasing trends in mcr-1 prevalence among extended-spectrum-beta-Lactamase-producing Escherichia coli isolates from French calves despite decreasing exposure to colistin. Antimicrob Agents Chemother 60, 6433-6434.

Hawkey, P.M., 2008. Prevalence and clonality of extended-spectrum β-lactamases in Asia. Clin Microbiol Infect 14, 159-165.

Hernández-Allés, S., Benedí, V.J., Martínez-Martínez, L., Pascual, A., Aguilar, A., Tomás, J.M., Albertí, S., 1999. Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob Agents Chemother 43, 937-939.

Hernandez, M., Iglesias, M.R., Rodriguez-Lazaro, D., Gallardo, A., Quijada, N., MiguelaVilloldo, P., Campos, M.J., Piriz, S., Lopez-Orozco, G., de Frutos, C., Saez, J.L., UgarteRuiz, M., Dominguez, L., Quesada, A., 2017. Co-occurrence of colistin-resistance genes mcr1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015. Euro Surveill 22, 30586.

Hinchliffe, P., Yang, Q.E., Portal, E., Young, T., Li, H., Tooke, C.L., Carvalho, M.J., Paterson, N.G., Brem, J., Niumsup, P.R., 2017. Insights into the mechanistic basis of plasmid-mediated colistin resistance from crystal structures of the catalytic domain of MCR1. Sci Rep 7, 1-10.

Hinenoya, A., Ichimura, H., Awasthi, S.P., Yasuda, N., Yatsuyanagi, J., Yamasaki, S., 2019. Phenotypic and molecular characterization of Escherichia albertii: Further surrogates to avoid potential laboratory misidentification. Int J Med Microbiol 309, 108-115.

Hinenoya, A., Naigita, A., Ninomiya, K., Asakura, M., Shima, K., Seto, K., Tsukamoto, T., Ramamurthy, T., Faruque, S.M., Yamasaki, S., 2009. Prevalence and characteristics of cytolethal distending toxin-producing Escherichia coli from children with diarrhea in Japan. Microbiol Immunol 53, 206-215.

Hinenoya, A., Shima, K., Asakura, M., Nishimura, K., Tsukamoto, T., Ooka, T., Hayashi, T., Ramamurthy, T., Faruque, S.M., Yamasaki, S., 2014. Molecular characterization of cytolethal distending toxin gene-positive Escherichia coli from healthy cattle and swine in Nara, Japan. BMC Microbiol 14, 97.

Hinenoya, A., Thu Tran, S.T., Nguyen, N.T., Nguyen, H.C., Le Nguyen, D.D., hoai phuong, H., Awasthi, S., Hassan, J., Sumimura, Y., Yamamoto, Y., Yamasaki, S., 2018. Isolation and molecular characterization of extended-spectrum β-lactamase producing Escherichia coli from industrial food animals in Mekong Delta, Vietnam. Jpn J Vet Res 66, 1-12.

Hoa, T.T.T., Nakayama, T., Huyen, H.M., Harada, K., Hinenoya, A., Phuong, N.T., Yamamoto, Y., 2020. Extended-spectrum beta-lactamase-producing Escherichia coli harbouring sul and mcr-1 genes isolates from fish gut contents in the Mekong Delta, Vietnam. Lett Appl Microbiol 71, 78-85.

Hoang, P.H., Awasthi, S.P., Do Nguyen, P., Nguyen, N.L.H., Nguyen, D.T.A., Le, N.H., Van Dang, C., Hinenoya, A., Yamasaki, S., 2017a. Antimicrobial resistance profiles and molecular characterization of Escherichia coli strains isolated from healthy adults in Ho Chi Minh City, Vietnam. J Vet Med Sci 79, 479-485.

Hoang, T.A.V., Nguyen, T.N.H., Ueda, S., Le, Q.P., Tran, T.T.N., Nguyen, T.N.D., Dao, T.V.K., Tran, M.T., Le, T.T.T., Le, T.L., Nakayama, T., Hirai, I., Do, T.H., Vien, Q.M., Yamamoto, Y., 2017b. Common findings of bla (CTX-M-55)-encoding 104-139 kbp plasmids harbored by extended-spectrum β-lactamase-producing Escherichia coli in pork meat, wholesale market workers, and patients with urinary tract infection in Vietnam. Curr Microbiol 74, 203-211.

Hoang, T.H., Wertheim, H., Minh, N.B., Duong, T.N., Anh, D.D., Phuong, T.T.L., Son, T.H., Izumiya, H., Ohnishi, M., Shibayama, K., 2013. Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae strains containing New Delhi metallo-beta-lactamase isolated from two patients in Vietnam. J Clin Microbiol 51, 373-374.

Hussein, N.H., Al-Kadmy, I.M., Taha, B.M., Hussein, J.D., 2021. Mobilized colistin resistance (mcr) genes from 1 to 10: a comprehensive review. Mol Bio Rep 48, 2897-2907.

Iguchi, A., Iyoda, S., Seto, K., Morita-Ishihara, T., Scheutz, F., Ohnishi, M., 2015. Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J Clin Microbiol 53, 2427-2432.

Iguchi, A., Iyoda, S., Seto, K., Nishii, H., Ohnishi, M., Mekata, H., Ogura, Y., Hayashi, T., 2016. Six novel O genotypes from shiga toxin-producing Escherichia coli. Front Microbiol 7,765.

Jakobsen, L., Kurbasic, A., Skjøt-Rasmussen, L., Ejrnaes, K., Porsbo, L.J., Pedersen, K., Jensen, L.B., Emborg, H.D., Agersø, Y., Olsen, K.E., Aarestrup, F.M., Frimodt-Møller, N., Hammerum, A.M., 2010. Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with communitydwelling humans and patients with urinary tract infection. Foodborne Pathog Dis 7, 537-547.

Jindal, A.K., Pandya, K., Khan, I.D., 2015. Antimicrobial resistance: A public health challenge. Med J Armed Forces India 71, 178-181.

Jouve, M., Garcia, M.I., Courcoux, P., Labigne, A., Gounon, P., Le Bouguénec, C., 1997. Adhesion to and invasion of HeLa cells by pathogenic Escherichia coli carrying the afa-3 gene cluster are mediated by the AfaE and AfaD proteins, respectively. Infect Immun 65, 4082-4089.

Kaper, J.B., Nataro, J.P., Mobley, H.L.T., 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123-140.

Kawahara, R., Fujiya, Y., Yamaguchi, T., Khong, D.T., Nguyen, T.N., Tran, H.T., Yamamoto, Y., 2019. Most domestic livestock possess colistin-resistant commensal Escherichia coli harboring mcr in a rural community in Vietnam. Antimicrob Agents Chemother 63, e00594-00519.

Kempf, I., Jouy, E., Chauvin, C., 2016. Colistin use and colistin resistance in bacteria from animals. Int J Antimicrob Agents 48, 598-606.

Kim, D.P., Saegerman, C., Douny, C., Dinh, T.V., Xuan, B.H., Vu, B.D., Hong, N.P., Scippo, M.-L., 2013. First survey on the use of antibiotics in pig and poultry production in the Red River Delta region of Vietnam. Food and Public Health 3, 247-256.

Kimera, Z.I., Mshana, S.E., Rweyemamu, M.M., Mboera, L.E.G., Matee, M.I.N., 2020. Antimicrobial use and resistance in food-producing animals and the environment: an African perspective. Antimicrob Resist Infect Control 9, 37.

Lahlaoui, H., Khalifa, A.B.H., Moussa, M.B., 2014. Epidemiology of Enterobacteriaceae producing CTX-M type extended spectrum β-lactamase (ESBL). Med Mal Infect 44, 400-404.

Landers, T.F., Cohen, B., Wittum, T.E., Larson, E.L., 2012. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep 127, 4-22.

Lazarus, B., Paterson, D.L., Mollinger, J.L., Rogers, B.A., 2015. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review. Clin Infect Dis 60, 439-452.

Le Bouguenec, C., Garcia, M.I., Ouin, V., Desperrier, J.M., Gounon, P., Labigne, A., 1993. Characterization of plasmid-borne afa-3 gene clusters encoding afimbrial adhesins expressed by Escherichia coli strains associated with intestinal or urinary tract infections. Infect Immun 61, 5106-5114.

Le, H.H., Koizumi, N., Ung, T.T.H., Le, T.T., Nguyen, H.L.K., Hoang, P.V.M., Nguyen, C.N., Khong, T.M., Hasebe, F., Haga, T., Le, M.T.Q., Hirayama, K., Miura, K., 2020. Antibiotic-resistant Escherichia coli isolated from urban rodents in Hanoi, Vietnam. J Vet Med Sci 82, 653-660.

Le, Q.P., Ueda, S., Nguyen, T.N., Dao, T.V., Van Hoang, T.A., Tran, T.T., Hirai, I., Nakayama, T., Kawahara, R., Do, T.H., Vien, Q.M., Yamamoto, Y., 2015. Characteristics of extended-spectrum β-lactamase-producing Escherichia coli in retail meats and shrimp at a local market in Vietnam. Foodborne Pathog Dis 12, 719-725.

Leistner, R., Bloch, A., Sakellariou, C., Gastmeier, P., Schwab, F., 2014. Costs and length of stay associated with extended-spectrum β-lactamase production in cases of Escherichia coli bloodstream infection. J Glob Antimicrob Resist 2, 107-109.

Li, R., Zhang, P., Yang, X., Wang, Z., Fanning, S., Wang, J., Du, P., Bai, L., 2019. Identification of a novel hybrid plasmid coproducing mcr-1 and mcr-3 variant from an Escherichia coli strain. J Antimicrob Chemother 74, 1517-1520.

Litrup, E., Kiil, K., Hammerum, A.M., Roer, L., Nielsen, E.M., Torpdahl, M., 2017. Plasmidborne colistin resistance gene mcr-3 in Salmonella isolates from human infections, Denmark, 2009-17. Euro Surveill 22, 30587.

Liu, G., Ali, T., Gao, J., Ur Rahman, S., Yu, D., Barkema, H.W., Huo, W., Xu, S., Shi, Y., Kastelic, J.P., Han, B., 2020. Co-occurrence of plasmid-mediated colistin resistance (mcr-1) and extended-spectrum beta-lactamase encoding genes in Escherichia coli from bovine mastitic milk in China. Microb Drug Resist 26, 685-696.

Liu, L., Feng, Y., Zhang, X., McNally, A., Zong, Z., 2017. New variant of mcr-3 in an extensively drug-resistant Escherichia coli clinical isolate carrying mcr-1 and blaNDM-5. Antimicrob Agents Chemother 61, e01757-01717.

Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L.F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J.H., Shen, J., 2016. Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in China: a microbiological and molecular biological study.

Lancet Infect Dis 16, 161-168.

Livermore, D.M., Woodford, N., 2006. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 14, 413-420.

Long, H., Feng, Y., Ma, K., Liu, L., McNally, A., Zong, Z., 2019. The co-transfer of plasmidborne colistin-resistant genes mcr-1 and mcr-3.5, the carbapenemase gene blaNDM-5 and the 16S methylase gene rmtB from Escherichia coli. Sci Rep 9, 696.

Luo, Q., Wang, Y., Xiao, Y., 2020. Prevalence and transmission of mobilized colistin resistance (mcr) gene in bacteria common to animals and humans. Biosaf Health 2, 71-78.

Luu, Q.H., Nguyen, T.B.T., Nguyen, T.L.A., Do, T.T.T., Dao, T.H.T., Padungtod, P., 2021. Antibiotics use in fish and shrimp farms in Vietnam. Aquac Rep 20, 100711.

Luvsansharav, U.O., Hirai, I., Niki, M., Sasaki, T., Makimoto, K., Komalamisra, C., Maipanich, W., Kusolsuk, T., Sa-Nguankiat, S., Pubampen, S., Yamamoto, Y., 2011. Analysis of risk factors for a high prevalence of extended-spectrum {beta}-lactamaseproducing Enterobacteriaceae in asymptomatic individuals in rural Thailand. J Med Microbiol 60, 619-624.

Makita, K., Goto, M., Ozawa, M., Kawanishi, M., Koike, R., Asai, T., Tamura, Y., 2016.

Multivariable analysis of the association between antimicrobial use and antimicrobial resistance in Escherichia coli isolated from apparently healthy pigs in Japan. Microb Drug Resist 22, 28-39.

Malhotra-Kumar, S., Xavier, B.B., Das, A.J., Lammens, C., Butaye, P., Goossens, H., 2016. Colistin resistance gene mcr-1 harboured on a multidrug resistant plasmid. Lancet Infect Dis 16, 283-284.

Mambie, A., Vuotto, F., Poitrenaud, D., Weyrich, P., Cannesson, O., Dessein, R., Faure, K., Guery, B., Galpérine, T., 2016. Cefoxitin: An alternative to carbapenems in urinary tract infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae. Med Mal Infect 46, 215-219.

Manohar, P., Loh, B., Leptihn, S., 2020. Will the overuse of antibiotics during the coronavirus pandemic accelerate antimicrobial resistance of bacteria? Infect Microb Dis 2, 87–88.

Mansan-Almeida, R., Pereira, A.L., Giugliano, L.G., 2013. Diffusely adherent Escherichia coli strains isolated from children and adults constitute two different populations. BMC Microbiol 13, 22.

Martínez-Martínez, L., Hernández-Allés, S., Albertí, S., Tomás, J.M., Benedi, V.J., Jacoby, G.A., 1996. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrob Agents Chemother 40, 342-348.

Melzer, M., Petersen, I., 2007. Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J Infect 55, 254-259.

Mena, C., Rodrigues, D., Silva, J., Gibbs, P., Teixeira, P., 2008. Occurrence, identification, and characterization of Campylobacter species isolated from portuguese poultry samples collected from retail establishments. Poult Sci 87, 187-190.

Nakayama, T., Jinnai, M., Kawahara, R., Diep, K.T., Thang, N.N., Hoa, T.T., Hanh, L.K., Khai, P.N., Sumimura, Y., Yamamoto, Y., 2017. Frequent use of colistin-based drug treatment to eliminate extended-spectrum beta-lactamase-producing Escherichia coli in backyard chicken farms in Thai Binh Province, Vietnam. Trop Anim Health Prod 49, 31-37.

Nakayama, T., Ueda, S., Huong, B.T.M., Tuyen, L.D., Komalamisra, C., Kusolsuk, T., Hirai, I., Yamamoto, Y., 2015. Wide dissemination of extended-spectrum β-lactamase-producing Escherichia coli in community residents in the Indochinese peninsula. Infect Drug Resist 8, 1-5.

Nation, R.L., Li, J., 2009. Colistin in the 21st century. Curr Opin Infect Dis 22, 535-543.

Nguyen do, P., Nguyen, T.A., Le, T.H., Tran, N.M., Ngo, T.P., Dang, V.C., Kawai, T., Kanki, M., Kawahara, R., Jinnai, M., Yonogi, S., Hirai, Y., Yamamoto, Y., Kumeda, Y., 2016. Dissemination of extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli within the food distribution system of Ho Chi Minh City, Vietnam. Biomed Res Int 2016, 8182096.

Nguyen, D.T.A., Awasthi, S.P., Hoang, P.H., Nguyen, P.D., Jayedul, H., Hatanaka, N., Hinenoya, A., Van Dang, C., Faruque, S.M., Yamasaki, S., 2021. Prevalence, serovar, and antimicrobial resistance of nontyphoidal Salmonella in vegetable, fruit, and water samples in Ho Chi Minh City, Vietnam. Foodborne Pathog Dis 18, 354-363.

Nguyen, K.V., Thi Do, N.T., Chandna, A., Nguyen, T.V., Pham, C.V., Doan, P.M., Nguyen, A.Q., Thi Nguyen, C.K., Larsson, M., Escalante, S., Olowokure, B., Laxminarayan, R., Gelband, H., Horby, P., Thi Ngo, H.B., Hoang, M.T., Farrar, J., Hien, T.T., Wertheim, H.F., 2013. Antibiotic use and resistance in emerging economies: a situation analysis for Viet Nam. BMC Public Health 13, 1158.

Nguyen, N.T., Nguyen, H.M., Nguyen, C.V., Nguyen, T.V., Nguyen, M.T., Thai, H.Q., Ho, M.H., Thwaites, G., Ngo, H.T., Baker, S., 2016. Use of colistin and other critical antimicrobials on pig and chicken farms in southern Vietnam and its association with resistance in commensal Escherichia coli bacteria. Appl Environ Microbiol 82, 3727-3735.

Nguyen, T.V., Le Van, P., Le Huy, C., Weintraub, A., 2004. Diarrhea caused by rotavirus in children less than 5 years of age in Hanoi, Vietnam. J Clin Microbiol 42, 5745-5750. Olaitan, A.O., Morand, S., Rolain, J.M., 2014. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 5, 643.

Oli, A.N., Eze, D.E., Gugu, T.H., Ezeobi, I., Maduagwu, U.N., Ihekwereme, C.P., 2017. Multi-antibiotic resistant extended-spectrum beta-lactamase producing bacteria pose a challenge to the effective treatment of wound and skin infections. Pan Afr Med J 27, 66-66.

Ombarak, R.A., Awasthi, S.P., Hatanaka, N., Yamasaki, S., 2021. Detection of plasmid mediated colistin resistance mcr-1 gene in ESBL producing Escherichia coli isolated from raw milk hard cheese in Egypt. Int Dairy J 117, 104986.

Pandey, M., Khan, A., Das, S.C., Sarkar, B., Kahali, S., Chakraborty, S., Chattopadhyay, S., Yamasaki, S., Takeda, Y., Nair, G.B., 2003. Association of cytolethal distending toxin locus cdtB with enteropathogenic Escherichia coli isolated from patients with acute diarrhea in Calcutta, India. J Clin Microbiol 41, 5277-5281.

Pérez-Rodríguez, F., Mercanoglu Taban, B., 2019. A state-of-art review on multi-drug resistant pathogens in foods of animal origin: risk factors and mitigation strategies. Front Microbiol 10, 2091.

Pham-Duc, P., Cook, M.A., Cong-Hong, H., Nguyen-Thuy, H., Padungtod, P., Nguyen-Thi, H., Dang-Xuan, S., 2019. Knowledge, attitudes and practices of livestock and aquaculture producers regarding antimicrobial use and resistance in Vietnam. PloS One 14, e0223115.

Pham Thanh, D., Thanh Tuyen, H., Nguyen Thi Nguyen, T., Chung The, H., Wick, R.R., Thwaites, G.E., Baker, S., Holt, K.E., 2016. Inducible colistin resistance via a disrupted plasmid-borne mcr-1 gene in a 2008 Vietnamese Shigella sonnei isolate. J Antimicrob Chemother 71, 2314-2317.

Pitout, J.D., Laupland, K.B., 2008. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8, 159-166.

Pitout, J.D.D., 2012. Extraintestinal pathogenic Escherichia coli: A combination of virulence with antibiotic resistance. Front Microbiol 3, 9.

Pokharel, S., Raut, S., Adhikari, B., 2019. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Glob Health 4, e002104.

Pormohammad, A., Nasiri, M.J., Azimi, T., 2019. Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infect Drug Resist 12, 1181-1197.

Prestinaci, F., Pezzotti, P., Pantosti, A., 2015. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109, 309-318.

Rafaï, C., Frank, T., Manirakiza, A., Gaudeuille, A., Mbecko, J.-R., Nghario, L., Serdouma, E., Tekpa, B., Garin, B., Breurec, S., 2015. Dissemination of IncF-type plasmids in multiresistant CTX-M-15-producing Enterobacteriaceae isolates from surgical-site infections in Bangui, Central African Republic. BMC Microbiol 15, 15.

Rahman, S., Ali, T., Ali, I., Khan, N.A., Han, B., Gao, J., 2018. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int 2018, 9519718.

Ramadan, A.A., Abdelaziz, N.A., Amin, M.A., Aziz, R.K., 2019. Novel blaCTX-M variants and genotype-phenotype correlations among clinical isolates of extended spectrum beta lactamase-producing Escherichia coli. Sci Rep 9, 4224.

Rawat, D., Nair, D., 2010. Extended-spectrum beta-lactamases in Gram negative bacteria. J Glob Infect Dis 2, 263-274.

Rebelo, A.R., Bortolaia, V., Kjeldgaard, J.S., Pedersen, S.K., Leekitcharoenphon, P., Hansen, I.M., Guerra, B., Malorny, B., Borowiak, M., Hammerl, J.A., Battisti, A., Franco, A., Alba, P., Perrin-Guyomard, A., Granier, S.A., De Frutos Escobar, C., Malhotra-Kumar, S., Villa, L., Carattoli, A., Hendriksen, R.S., 2018. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill 23, 17-00672.

Reed, M.D., Stern, R.C., O'Riordan, M.A., Blumer, J.L., 2001. The pharmacokinetics of colistin in patients with cystic fibrosis. J Clin Pharmacol 41, 645-654.

Rossolini, G.M., D'Andrea, M.M., Mugnaioli, C., 2008. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 14 Suppl 1, 33-41.

Sekyere, J.O., Maningi, N.E., Modipane, L., Mbelle, N.M., 2020. Emergence of mcr-9.1 in ESBL-producing clinical Enterobacteriaceae in Pretoria, South Africa: Global evolutionary phylogenomics, resistome and mobilome. mSystems 5, e00148-00120.

Shea, K.M., 2003. Antibiotic resistance: what is the impact of agricultural uses of antibiotics on children’s health? Pediatrics 112, 253-258.

Shen, Z., Wang, Y., Shen, Y., Shen, J., Wu, C., 2016. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis 16, 293.

Sianipar, O., Asmara, W., Dwiprahasto, I., Mulyono, B., 2019. Mortality risk of bloodstream infection caused by either Escherichia coli or Klebsiella pneumoniae producing extendedspectrum β-lactamase: a prospective cohort study. BMC Res Notes 12, 719.

Smith, J.L., Fratamico, P.M., Gunther, N.W., 2007. Extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis 4, 134-163.

Süzük, S., Kaşkatepe, B., Avcıküçük, H., 2017. Determination of MIC distribution of colistin, fosfomycin, and tigecyclin antibiotics against carbapenem resistant Enterobacteriaceae. Biomed Res 28, 3731-3735.

Tada, T., Hong Nhung, P., Shimada, K., Tsuchiya, M., Mai Phuong, D., Quoc Anh, N., Ohmagari, N., Kirikae, T., 2017. Emergence of colistin-resistant Escherichia coli clinical isolates harboring mcr-1 in Vietnam. Int J Infect Dis 63, 72-73.

Tagliabue, A., Rappuoli, R., 2018. Changing priorities in vaccinology: Antibiotic resistance moving to the top. Front Immunol 9, 1068.

Tenover, F.C., Arbeit, R.D., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persing, D.H., Swaminathan, B., 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233-2239.

The European Committee on Antimicrobial Susceptibility Testing, Break point tables for interpretation of MICs and zone diameters, version 9.0. 2019. Available online: http://www.eucast.org (accessed on 30 December 2019).

Ueda, S., Ngan, B.T.K., Huong, B.T.M., Hirai, I., Tuyen, L.D., Yamamoto, Y., 2015. Limited transmission of bla CTX-M-9-type-positive Escherichia coli between humans and poultry in Vietnam. Antimicrob Agents Chemother 59, 3574-3577.

Van Nhiem, D., Paulsen, P., Suriyasathaporn, W., Smulders, F.J.M., Kyule, M.N., Baumann, M.P.O., Zessin, K.H., Hong Ngan, P., 2006. Preliminary analysis of tetracycline residues in marketed pork in Hanoi, Vietnam. Ann N Y Acad Sci 1081, 534-542.

Vu Nguyen, T., Le Van, P., Le Huy, C., Nguyen Gia, K., Weintraub, A., 2006. Etiology and epidemiology of diarrhea in children in Hanoi, Vietnam. Int J Infect Dis 10, 298-308.

Vu, T.V.D., Choisy, M., Do, T.T.N., Nguyen, V.M.H., Campbell, J.I., Le, T.H., Nguyen, V.T., Wertheim, H.F.L., Pham, N.T., Nguyen, V.K., van Doorn, H.R., the, V.c., 2021. Antimicrobial susceptibility testing results from 13 hospitals in Viet Nam: VINARES 2016–2017. Antimicrob Resist Infect Control 10, 78.

Wang, C., Feng, Y., Liu, L., Wei, L., Kang, M., Zong, Z., 2020. Identification of novel mobile colistin resistance gene mcr-10. Emerg Microbes Infect 9, 508-516.

WHO, 2017a. Critically important antimicrobials for human medicine: ranking of antimicrobial agents for risk management of antimicrobial resistance due to non-human use.

WHO, 2017b. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/WHO-PPLShort_Summary_25Feb-ET_NM_WHO.pdf.

WHO, 2019a. 2019 antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. World Health Organization. https://apps.who.int/iris/handle/10665/330420. License: CC BY-NC-SA 3.0 IGO.

WHO, 2019b. New report calls for urgent action to avert antimicrobial resistance crisis. WHO Jt. News Release.

Williams, D., 2016. Antimicrobial resistance: are we at the dawn of the post-antibiotic era. JR Coll. Physicians Edinb 46, 150-156.

Woerther, P.-L., Burdet, C., Chachaty, E., Andremont, A., 2013. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev 26, 744-758.

Wu, C., Wang, Y., Shi, X., Wang, S., Ren, H., Shen, Z., Wang, Y., Lin, J., Wang, S., 2018. Rapid rise of the ESBL and mcr-1 genes in Escherichia coli of chicken origin in China, 2008–2014. Emerg Microbes Infect 7, 30.

Xiang, R., Liu, B.H., Zhang, A.Y., Lei, C.W., Ye, X.L., Yang, Y.X., Chen, Y.P., Wang, H.N., 2018. Colocation of the polymyxin resistance gene mcr-1 and a variant of mcr-3 on a plasmid in an Escherichia coli isolate from a chicken farm. Antimicrob Agents Chemother 62, e00501-00518.

Yamaguchi, T., Kawahara, R., Hamamoto, K., Hirai, I., Khong, D.T., Nguyen, T.N., Tran, H.T., Motooka, D., Nakamura, S., Yamamoto, Y., 2020. High prevalence of colistin-resistant Escherichia coli with chromosomally carried mcr-1 in healthy residents in Vietnam. mSphere 5, e00117-00120.

Yamaguchi, T., Kawahara, R., Harada, K., Teruya, S., Nakayama, T., Motooka, D., Nakamura, S., Nguyen, P.D., Kumeda, Y., Van Dang, C., Hirata, K., Yamamoto, Y., 2018. The presence of colistin resistance gene mcr-1 and -3 in ESBL producing Escherichia coli isolated from food in Ho Chi Minh City, Vietnam. FEMS Microbiol Lett 365, fny100.

Yamamoto, Y., Kawahara, R., Fujiya, Y., Sasaki, T., Hirai, I., Khong, D.T., Nguyen, T.N., Nguyen, B.X., 2019. Wide dissemination of colistin-resistant Escherichia coli with the mobile resistance gene mcr in healthy residents in Vietnam. J Antimicrob Chemother 74, 523-524.

Yamasaki, S., Le, T.D., Vien, M.Q., Van Dang, C., Yamamoto, Y., 2017. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli and residual antimicrobials in the environment in Vietnam. Anim Health Res Rev 18, 128-135.

Yin, W., Li, H., Shen, Y., Liu, Z., Wang, S., Shen, Z., Zhang, R., Walsh, T.R., Shen, J.,

Wang, Y., 2017. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio 8, e00543-00517.

Zhou, Y., Zhu, X., Hou, H., Lu, Y., Yu, J., Mao, L., Mao, L., Sun, Z., 2018. Characteristics of diarrheagenic Escherichia coli among children under 5 years of age with acute diarrhea: a hospital based study. BMC Infect Dis 18, 1-10.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る