リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually

Nansai, Keisuke Tohno, Susumu Chatani, Satoru Kanemoto, Keiichiro Kagawa, Shigemi Kondo, Yasushi Takayanagi, Wataru Lenzen, Manfred 京都大学 DOI:10.1038/s41467-021-26348-y

2021

概要

Worldwide exposure to ambient PM₂.₅ causes over 4 million premature deaths annually. As most of these deaths are in developing countries, without internationally coordinated efforts this polarized situation will continue. As yet, however, no studies have quantified nation-to-nation consumer responsibility for global mortality due to both primary and secondary PM2.5 particles. Here we quantify the global footprint of PM₂.₅-driven premature deaths for the 19 G20 nations in a position to lead such efforts. G20 consumption in 2010 was responsible for 1.983 [95% Confidence Interval: 1.685–2.285] million premature deaths, at an average age of 67, including 78.6 [71.5–84.8] thousand infant deaths, implying that the G20 lifetime consumption of about 28 [24–33] people claims one life. Our results indicate that G20 nations should take responsibility for their footprint rather than focusing solely on transboundary air pollution, as this would expand opportunities for reducing PM2.5-driven premature mortality. Given the infant mortality footprint identified, it would moreover contribute to ensuring infant lives are not unfairly left behind in countries like South Africa, which have a weak relationship with G20 nations.

この論文で使われている画像

参考文献

1. Whitmee, S. et al. Safeguarding human health in the anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386, 1973–2028 (2015).

2. Health Effects Institute. State of Global Air 2018. Special Report. (Health Effects Institute, Boston, MA, 2018).

3. WHO. Ambient (outdoor) air pollution, https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (2018).

4. WHO. Evolution of WHO air quality guidelines: past, present and future. (Copenhagen, 2017).

5. World Bank and Institute for Health Metrics and Evaluation. The Cost of Air Pollution: Strengthening the Economic Case for Action. (World Bank, Washington, DC, 2016).

6. Lenzen, M. et al. Global socio-economic losses and environmental gains from the Coronavirus pandemic. PLoS One 15, e0235654. (2020).

7. He, G. J., Pan, Y. H. & Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 3, 1005–1011 (2020).

8. Silver, B., He, X. Y., Arnold, S. R. & Spracklen, D. V. The impact of COVID-19 control measures on air quality in China. Environ. Res. Lett. 15, 084021 (2020).

9. Wang, P. F., Chen, K. Y., Zhu, S. Q., Wang, P. & Zhang, H. L. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. Conserv. Recy. 158, 104814 (2020).

10. Maji, K. J., Dikshit, A. K., Arora, M. & Deshpande, A. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020. Sci. Total. Env. 612, 683–693 (2018).

11. Peters, G. P. From production-based to consumption-based national emission inventories. Ecol. Econ. 65, 13–23 (2008).

12. Zhang, Q. et al. Transboundary health impacts of transported global air pollution and international trade. Nature 543, 705–709 (2017).

13. Xiao, Y. Y., Murray, J. & Lenzen, M. International trade linked with disease burden from airborne particulate pollution. Resour. Conserv. Recy 129, 1–11 (2018).

14. Kim, E., Moon, S. W. & Kagawa, S. Spatial economic linkages of economic growth and air pollution: developing an air pollution-multinational CGE model of China, Japan, and Korea. Ann. Regional Sci. 63, 255–268 (2019).

15. Nagashima, F., Kagawa, S., Suh, S., Nansai, K. & Moran, D. Identifying critical supply chain paths and key sectors for mitigating primary carbonaceous PM2.5 mortality in Asia. Econ. Syst. Res. 29, 105–123 (2017).

16. Takahashi, K. et al. Production-based emissions, consumption-based emissions and consumption-based health impacts of PM2.5 carbonaceous aerosols in Asia. Atmos. Env. 97, 406–415 (2014).

17. Nansai, K. et al. Affluent countries inflict inequitable mortality and economic loss on Asia via PM2.5 emissions. Env. Int. 134, 105238 (2020).

18. Zhang, Y. X. et al. Quantifying regional consumption-based health impacts attributable to ambient air pollution in China. Env. Int. 112, 100–106 (2018).

19. Nagashima, F. Critical structural paths of residential PM2.5 emissions within the Chinese provinces. Energ. Econ. 70, 465–471 (2018).

20. Xia, Y., Guan, D., Meng, J., Li, Y. & Shan, Y. Assessment of the pollution–health–economics nexus in China. Atmos. Chem. Phys. 18, 14433–14443 (2018).

21. Zhao, H. Y. et al. Effects of atmospheric transport and trade on air pollution mortality in China. Atmos. Chem. Phys. 17, 10367–10381 (2017).

22. Wang, H. K. et al. Trade-driven relocation of air pollution and health impacts in China. Nat. Commun. 8, 738 (2017).

23. Tessum, C. W. et al. Inequity in consumption of goods and services adds to racial-ethnic disparities in air pollution exposure. Proc. Natl Acad. Sci. USA 116, 6001–6006 (2019).

24. Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

25. Zhang, H. et al. Evolution of the life cycle primary PM2.5 emissions in globalized production systems. Environ. Int. 131, 104996 (2019).

26. Liang, S. et al. Consumption-based human health impacts of primary PM2.5: the hidden burden of international trade. J. Clean. Prod. 167, 133–139 (2017).

27. Snider, G. et al. Variation in global chemical composition of PM2.5: emerging results from SPARTAN. Atmos. Chem. Phys. 16, 9629–9653 (2016).

28. Lenzen, M., Murray, J., Sack, F. & Wiedmann, T. Shared producer and consumer responsibility - Theory and practice. Ecol. Econ. 61, 27–42 (2007).

29. Munksgaard, J. & Pedersen, K. A. CO2 accounts for open economies: producer or consumer responsibility? Energ. Policy 29, 327–334 (2001).

30. G20. G20 Saudi Arbia 2020, https://g20.org/en/Pages/home.aspx (2020).

31. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

32. Apte, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing Global Mortality from Ambient PM2.5. Environ. Sci. Technol. 49, 8057–8066 (2015).

33. Liu, J., Han, Y., Tang, X., Zhu, J. & Zhu, T. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total. Env. 568, 1253–1262 (2016).

34. Hu, J. et al. Premature mortality attributable to particulate matter in China: source contributions and responses to reductions. Env. Sci. Technol. 51, 9950–9959 (2017).

35. Conibear, L., Butt, E. W., Knote, C., Arnold, S. R. & Spracklen, D. V. Stringent emission control policies can provide large improvements in air quality and public health in India. Geohealth 2, 196–211 (2018).

36. Gakidou, E. et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1345–1422 (2017).

37. Shaddick, G. et al. Data Integration for the Assessment of Population Exposure to Ambient Air Pollution for Global Burden of Disease Assessment. Env. Sci. Technol. 52, 9069–9078 (2018).

38. Byun, D. & Schere, K. L. Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 59, 51–77 (2006).

39. Murray, C. J. L. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 (2015).

40. Lestari, P. & Mauliadi, Y. D. Source apportionment of particulate matter at urban mixed site in Indonesia using PMF. Atmos. Env. 43, 1760–1770 (2009).

41. WHO. Ambient (outdoor) air pollution database, by country and city, https:// www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database/ 2016 (2016).

42. Permadi, D. A., Kim Oanh, N. T. & Vautard, R. Integrated emission inventory and modeling to assess distribution of particulate matter mass and black carbon composition in Southeast Asia. Atmos. Chem. Phys. 18, 2725–2747 (2018).

43. Joint Research Center. The Emissions Database for Global Atmospheric Research (EDGAR v.4.3.1), https://edgar.jrc.ec.europa.eu/overview.php? v=431 (2018).

44. Crippa, M. et al. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 10, 1987–2013 (2018).

45. Burnett, R. T. et al. An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure. Env. Health Persp 122, 397–403 (2014).

46. Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).

47. Liu, J. et al. Decadal changes in anthropogenic source contribution of PM2.5 pollution and related health impacts in China, 1990–2015. Atmos. Chem. Phys. 20, 7783–7799 (2020).

48. United Nations. UN Sustainable Development Goals: 17 Goals to Transform Our World, http://www.un.org/sustainabledevelopment/ (2015).

49. IHME. Global Health Data Exchange; GBD Results Tool, http://ghdx.healthdata.org/gbd-results-tool (2018).

50. Trasande, L., Malecha, P. & Attina, T. M. Particulate Matter Exposure and Preterm Birth: Estimates of U. S. Attributable Burden and Economic Costs. Env. Health Persp 124, 1913–1918 (2016).

51. Wu, R. et al. Economic impacts from PM2.5 pollution-related health effects: a case study in Shanghai. Environ. Sci. Technol. 51, 5035–5042 (2017).

52. Yang, S. Y., Fang, D. L. & Chen, B. Human health impact and economic effect for PM2.5 exposure in typical cities. Appl. Energy 249, 316–325 (2019).

53. Wu, Z. T. et al. Attributable risk and economic cost of hospital admissions for mental disorders due to PM2.5 in Beijing. Sci. Total Environ. 718, 137274 (2020).

54. Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the Structure of the World Economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

55. Moran, D. & Kanemoto, K. Tracing global supply chains to air pollution hotspots. Environ. Res. Lett. 11, 094017 (2016).

56. Kanemoto, K., Moran, D. & Hertwich, E. G. Mapping the Carbon Footprint of Nations. Environ. Sci. Technol. 50, 10512–10517 (2016).

57. Skamarock, W. C. et al. A description of the advanced research WRF version 3. https://doi.org/10.5065/D68S4MVH (2008).

58. Emmons, L. K. et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model. Dev. 3, 43–67 (2010).

59. van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

60. Guenther, A. B. et al. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model. Dev. 5, 1471–1492 (2012).

61. Interagency Monitoring of Protected Visual Environments. http:// vista.cira.colostate.edu/Improve/improve-data/ (2019).

62. Chemical Co-ordinating Centre of EMEP. https://projects.nilu.no/ccc/ index.html (2019).

63. Acid Deposition Monitoring Network in East Asia. https://monitoring.eanet. asia/document/public/index (2019).

64. Gassó, S. et al. A combined observational and modeling approach to study modern dust transport from the Patagonia desert to East Antarctica. Atmos. Chem. Phys. 10, 8287–8303 (2010).

65. Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophy. 50, 3005 (2012).

66. Kutralam-Muniasamy, G., Perez-Guevara, F., Martinez, I. E. & Chari, S. V. Particulate matter concentrations and their association with COVID-19- related mortality in Mexico during June 2020 Saharan dust event. Environ. Sci. Pollut. Res. 28, 49989-50000 (2021).

67. Wakamatsu, S. et al. A Comparative Study of Urban Air Quality in Megacities in Mexico and Japan: Based on Japan-Mexico Joint Research Project on Formation Mechanism of Ozone, VOCs and PM2.5, and Proposal of Countermeasure Scenario. (JICA Research Institute, Tokyo, 2017).

68. Gómez-Losada, Á. & Pires, J. C. M. Estimation of Particulate Matter Contributions from Desert Outbreaks in Mediterranean Countries (2015–2018) Using the Time Series Clustering Method. Atmosphere-Basel 12, 5 (2020).

69. Levy, R., et al. MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing System, https://doi.org/10.5067/MODIS/MOD04_L2.061 (2015).

70. Thornhill, G. D., Ryder, C. L., Highwood, E. J., Shaffrey, L. C. & Johnson, B. T. The effect of South American biomass burning aerosol emissions on the regional climate. Atmos. Chem. Phys. 18, 5321–5342 (2018).

71. Center for International Earth Science Information Network - CIESIN - Columbia University. Gridded Population of the World, Version 4 (GPWv4): Basic Demographic Characteristics, Revision 11. Palisades, https:// landscan.ornl.gov/ (2018).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る