リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Knee alignment correction by high tibial osteotomy reduces symptoms and synovial inflammation in knee osteoarthritis accompanied by macrophage phenotypic change from M1 to M2」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Knee alignment correction by high tibial osteotomy reduces symptoms and synovial inflammation in knee osteoarthritis accompanied by macrophage phenotypic change from M1 to M2

Yoshida, Shigeo 京都大学 DOI:10.14989/doctor.k24829

2023.07.24

概要

Osteoarthritis (OA) is the leading cause of disability worldwide. In particular, knee OA causes
pain and distress in >20% of elderly patients and limits their quality of life (1). Diseasemodifying drugs for knee OA are unknown, and arthroplasty is eventually performed on endstage patients to alleviate severe symptoms. Knee OA has long been considered a “wear and
tear” disease due to mechanical loading that leads to loss of cartilage (2). OA is not presently
regarded as a wear and tear condition but rather a multifactorial disease that affects whole joint
tissues and is characterized by progressive degeneration of the articular cartilage, subchondral
bone remodeling, osteophyte formation, and synovial inflammation (3). Accumulating
evidence suggests that synovial inflammation is associated with knee symptoms and
progressive OA (4).
Malalignment is a major risk factor for knee OA. A large knee adduction moment in varus
knee alignment increases pressure loading on the cartilage, which causes the breakdown of the
cartilage matrix and subsequent joint space narrowing (5,6). The mechanism of cartilage
breakdown is complex and is not simply wear and tear. Micro cartilage fragments enhance the
production of pro-inflammatory cytokines and matrix degradation enzymes, which further
accelerate cartilage destruction (7). The progression of OA is thought to be irreversible, but
correction of malalignment by knee osteotomies, such as high tibial (HTO) and distal femoral
osteotomy, can relieve symptoms and functions while preserving OA joints (8). ...

この論文で使われている画像

参考文献

1.

Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. The Lancet 2019;393:1745-59.

2.

Dobson GP, Letson HL, Grant A, McEwen P, Hazratwala K, Wilkinson M, et al.

Defining the osteoarthritis patient: back to the future. Osteoarthritis Cartilage

2018;26:1003-7.

Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the

joint as an organ. Arthritis Rheum 2012;64:1697-707.

3.

4.

5.

6.

7.

8.

Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, et al. Low-grade

inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev

Rheumatol 2016;12:580-92.

Miyazaki T, Wada M, Kawahara H, Sato M, Baba H, Shimada S. Dynamic load at

baseline can predict radiographic disease progression in medial compartment knee

osteoarthritis. Ann Rheum Dis 2002;61:617-22.

Hurwitz DE, Ryals AB, Case JP, Block JA, Andriacchi TP. The knee adduction moment

during gait in subjects with knee osteoarthritis is more closely correlated with static

alignment than radiographic disease severity, toe out angle and pain. J Orthop Res

2002;20:101-7.

Poole AR, Kobayashi M, Yasuda T, Laverty S, Mwale F, Kojima T, et al. Type II

collagen degradation and its regulation in articular cartilage in osteoarthritis. Ann

Rheum Dis 2002;61 Suppl 2:ii78-81.

Birmingham TB, Giffin JR, Chesworth BM, Bryant DM, Litchfield RB, Willits K, et

9.

al. Medial opening wedge high tibial osteotomy: a prospective cohort study of gait,

radiographic, and patient-reported outcomes. Arthritis Rheum 2009;61:648-57.

Agneskirchner JD, Hurschler C, Wrann CD, Lobenhoffer P. The effects of valgus

medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee:

a biomechanical study. Arthroscopy 2007;23:852-61.

10.

Martay JL, Palmer AJ, Bangerter NK, Clare S, Monk AP, Brown CP, et al. A preliminary

11.

modeling investigation into the safe correction zone for high tibial osteotomy. Knee

2018;25:286-95.

Nakayama H, Schroter S, Yamamoto C, Iseki T, Kanto R, Kurosaka K, et al. Large

12.

correction in opening wedge high tibial osteotomy with resultant joint-line obliquity

induces excessive shear stress on the articular cartilage. Knee Surg Sports Traumatol

Arthrosc 2018;26:1873-8.

Kuriyama S, Watanabe M, Nakamura S, Nishitani K, Sekiguchi K, Tanaka Y, et al.

Classical target coronal alignment in high tibial osteotomy demonstrates validity in

terms of knee kinematics and kinetics in a computer model. Knee Surg Sports

Traumatol Arthrosc 2020;28:1568-78.

24

HTO changes macrophage polarization in knee OA

13.

Lind M, McClelland J, Wittwer JE, Whitehead TS, Feller JA, Webster KE. Gait analysis

of walking before and after medial opening wedge high tibial osteotomy. Knee Surg

Sports Traumatol Arthrosc 2013;21:74-81.

14.

Whatling GM, Biggs PR, Elson DW, Metcalfe A, Wilson C, Holt C. High tibial

osteotomy results in improved frontal plane knee moments, gait patterns and patientreported outcomes. Knee Surg Sports Traumatol Arthrosc 2020;28:2872-82.

Atukorala I, Kwoh CK, Guermazi A, Roemer FW, Boudreau RM, Hannon MJ, et al.

Synovitis in knee osteoarthritis: a precursor of disease? Ann Rheum Dis 2016;75:390-

15.

16.

17.

18.

19.

20.

21.

5.

Daghestani HN, Pieper CF, Kraus VB. Soluble macrophage biomarkers indicate

inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol

2015;67:956-65.

Kraus VB, McDaniel G, Huebner JL, Stabler TV, Pieper CF, Shipes SW, et al. Direct in

vivo evidence of activated macrophages in human osteoarthritis. Osteoarthritis

Cartilage 2016;24:1613-21.

Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin

Invest 2012;122:787-95.

Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu J, et al. Synovial macrophage M1

polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann

Rheum Dis 2018;77:1524-34.

Kumagai K, Fujimaki H, Yamada S, Nejima S, Matsubara J, Inaba Y. Changes of

synovial fluid biomarker levels after opening wedge high tibial osteotomy in patients

with knee osteoarthritis. Osteoarthritis Cartilage 2021;29:1020-8.

Kwak YH, Kwak DK, Kim NY, Kim YJ, Lim JS, Yoo JH. Significant changes in

synovial fluid microRNAs after high tibial osteotomy in medial compartmental knee

osteoarthritis: Identification of potential prognostic biomarkers. PLoS One

2020;15:e0227596.

22.

Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis

23.

1957;16:494-502.

Moreland JR, Bassett LW, Hanker GJ. Radiographic analysis of the axial alignment of

the lower extremity. J Bone Joint Surg Am 1987;69:745-9.

24.

25.

26.

Kuriyama S, Morimoto N, Shimoto T, Takemoto M, Nakamura S, Nishitani K, et al.

Clinical efficacy of preoperative 3D planning for reducing surgical errors during openwedge high tibial osteotomy. J Orthop Res 2019;37:898-907.

Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg

Am 2003;85-A Suppl 2:58-69.

Wang X, Park J, Susztak K, Zhang NR, Li M. Bulk tissue cell type deconvolution with

multi-subject single-cell expression reference. Nat Commun 2019;10:380.

25

HTO changes macrophage polarization in knee OA

27.

Chou CH, Jain V, Gibson J, Attarian DE, Haraden CA, Yohn CB, et al. Synovial cell

cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci Rep

2020;10:10868.

28.

Krenn V, Morawietz L, Burmester GR, Kinne RW, Mueller-Ladner U, Muller B, et al.

Synovitis score: discrimination between chronic low-grade and high-grade synovitis.

Histopathology 2006;49:358-64.

Mulder K, Patel AA, Kong WT, Piot C, Halitzki E, Dunsmore G, et al. Cross-tissue

single-cell landscape of human monocytes and macrophages in health and disease.

29.

30.

31.

32.

33.

34.

35.

Immunity 2021;54:1883-900 e5.

Murata K, Fang C, Terao C, Giannopoulou EG, Lee YJ, Lee MJ, et al. HypoxiaSensitive COMMD1 Integrates Signaling and Cellular Metabolism in Human

Macrophages and Suppresses Osteoclastogenesis. Immunity 2017;47:66-79 e5.

Wood MJ, Leckenby A, Reynolds G, Spiering R, Pratt AG, Rankin KS, et al.

Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI

Insight 2019;4.

Tanida S, Yoshitomi H, Nishitani K, Ishikawa M, Kitaori T, Ito H, et al. CCL20

produced in the cytokine network of rheumatoid arthritis recruits CCR6+ mononuclear

cells and enhances the production of IL-6. Cytokine 2009;47:112-8.

Hamasaki M, Terkawi MA, Onodera T, Homan K, Iwasaki N. A Novel Cartilage

Fragments Stimulation Model Revealed that Macrophage Inflammatory Response

Causes an Upregulation of Catabolic Factors of Chondrocytes In Vitro. Cartilage

2021;12:354-61.

Mendel K, Eliaz N, Benhar I, Hendel D, Halperin N. Magnetic isolation of particles

suspended in synovial fluid for diagnostics of natural joint chondropathies. Acta

Biomater 2010;6:4430-8.

Kuster MS, Podsiadlo P, Stachowiak GW. Shape of wear particles found in human knee

joints and their relationship to osteoarthritis. Br J Rheumatol 1998;37:978-84.

36.

Kane D, Gogarty M, O'Leary J, Silva I, Bermingham N, Bresnihan B, et al. Reduction

37.

of synovial sublining layer inflammation and proinflammatory cytokine expression in

psoriatic arthritis treated with methotrexate. Arthritis Rheum 2004;50:3286-95.

Amendola A, Bonasia DE. Results of high tibial osteotomy: review of the literature. Int

38.

39.

40.

Orthop 2010;34:155-60.

Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue

inflammation in early and late osteoarthritis. Ann Rheum Dis 2005;64:1263-7.

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA,

Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease.

J Cell Physiol 2018;233:6425-40.

Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage

26

HTO changes macrophage polarization in knee OA

41.

42.

43.

44.

45.

activation and polarization: nomenclature and experimental guidelines. Immunity

2014;41:14-20.

Liu B, Zhang M, Zhao J, Zheng M, Yang H. Imbalance of M1/M2 macrophages is

linked to severity level of knee osteoarthritis. Exp Ther Med 2018;16:5009-14.

Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu J, et al. Synovial macrophage M1

polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann

Rheum Dis 2018;77:1524-34.

Saito I, Koshino T, Nakashima K, Uesugi M, Saito T. Increased cellular infiltrate in

inflammatory synovia of osteoarthritic knees. Osteoarthritis Cartilage 2002;10:156-62.

Schedel J, Wenglen C, Distler O, Muller-Ladner U, Scholmerich J, Heinegard D, et al.

Differential adherence of osteoarthritis and rheumatoid arthritis synovial fibroblasts to

cartilage and bone matrix proteins and its implication for osteoarthritis pathogenesis.

Scand J Immunol 2004;60:514-23.

Roemer FW, Kassim Javaid M, Guermazi A, Thomas M, Kiran A, Keen R, et al.

Anatomical distribution of synovitis in knee osteoarthritis and its association with joint

effusion assessed on non-enhanced and contrast-enhanced MRI. Osteoarthritis

Cartilage 2010;18:1269-74.

27

HTO changes macrophage polarization in knee OA

Figure legends

Figure 1. Comparing gene expression profiles in the synovium at initial HTO and plate removal

by microarray analysis (n = 3) and real-time reverse transcription–polymerase chain reaction

(qRT-PCR) (n = 31). The volcano plot (A) shows the differential expression of 477 genes (red:

upregulated and blue: downregulated genes >2-fold change) compared with the synovium at

HTO. Representative Gene Ontology (GO) processes of downregulated (B) genes at plate

removal. Representative Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of

upregulated (C) and downregulated (D) genes at plate removal. The proportion of cells in the

synovium (E) was analyzed by deconvolution analysis with MuSiC using single-cell

sequencing data (27). (F) Gene expression (relative to GAPDH) of catabolic factors, proinflammatory and anti-inflammatory cytokines, chemokines, and macrophage surface markers

in synovial tissues at HTO (Pre) and plate removal (Post). qRT-PCR was performed in duplicate

and repeated twice. The same patients were connected by lines pre- and post-HTO for all 31

patients, and the three cases used for the microarray were marked in red. Bars indicate medians

and interquartile ranges. *: P <0.05, **: P <0.01, and ***: P <0.001 (Wilcoxon matched-pairs

signed-rank tests). HTO, high tibial osteotomy; Pre, initial HTO; Post, plate removal

Figure 2. Synovitis scores and macrophage phenotypes at high tibial osteotomy (HTO) (Pre)

and plate removal (Post). (A) Representative images of synovial tissue (ST) samples stained

28

HTO changes macrophage polarization in knee OA

with hematoxylin and eosin showing all three features of the synovitis scoring system. Black

scale

bars,

200

μm.

(B)

Synovitis

scores.

Representative

images

of

double

immunofluorescence staining of CD68 and macrophage polarization markers CD80 (C) and

CD206 (D) on STs. White scale bars, 50 μm. Percentages of CD80 (E) and CD206 (F) positive

vs. total macrophages. P values were determined by the Wilcoxon matched-pairs signed-rank

test. Bars in graphs indicate medians and interquartile ranges.

Figure 3. Stimulation of peripheral blood mononuclear cell (PBMC) derived macrophages and

fibroblast-like synoviocytes (FLSs) by cartilage fragments. Representative images (A) of

CD80-positive macrophages stimulated with cartilage fragments and stained with

immunofluorescence. Scale bars, 20 μm. Mean signal intensity (B) of CD80 in macrophage

cytoplasm (n = 5). Gene expression in PBMC derived macrophages (n = 4) (C) and FLSs (n =

5) (E) stimulated with cartilage fragments determined by real-time polymerase chain reaction.

The expression of RNA was normalized to those of TBP for macrophages and GAPDH for

FLSs. The concentration of inflammatory cytokines in culture supernatants of macrophages (n

= 4) (D) and FLSs (n = 5) (F) stimulated with cartilage fragments. (−) no cartilage fragments;

(+) and (++) low- and high-density cartilage fragments, respectively. Bars in graphs indicate

the mean and standard deviations. The experiments were performed in duplicate and repeated

twice. *P <0.05, ** P <0.01, *** P <0.001, by one-way analysis of variance and Tukey post29

HTO changes macrophage polarization in knee OA

hoc tests.

Figure 4. Associations between clinical scores and macrophage-related gene expression.

Spearman correlations between gene expression in synovial tissue (ST) and knee injury and

osteoarthritis outcome scores (KOOS): total score at plate removal (Post-op) (A) and between

gene expression in ST and ΔKOOS: total score between before high tibial osteotomy (HTO)

and at plate removal (B). Δ, delta (difference).

Figure 5. Summarized schema of the study. A possible mechanism underlying the beneficial

effects of the high tibial osteotomy might be that reducing load-bearing in the damaged medial

cartilage decreases cartilage fragment production that results in decreased inflammatory

cytokine expression and polarization to M2 macrophages.

30

HTO changes macrophage polarization in knee OA

Table

Table 1. Demographics showing characteristics of the study population.

n = 31

Pre (at HTO)

Post (at plate removal)

P-value

Age, years

61.1 ± 7.5

Sex, Female (n, %)

19, 61%

Body mass index, kg/m2

27.0 ± 4.0

KL grade 1/2/3/4, (n, %)

3(10)/10(32)/13(42)/5(16)

1(3)/9(29)/15(48)/6(19)

0.18

HKA angle, degree

7.8 ± 4.0 varus

0.9 ± 2.8 valgus

<0.001*

WBL ratio, %

14.9 ± 16.7

53.4 ± 11.4

<0.001*

KOOS, point

60.1 (47.0–69.6)

86.3 (75.6–91.1)

<0.001

ICRS grade 2/3/4, (n, %)

2(6)/15(48)/14(45)

8(26)/14(45)/9(29)

0.001

Medial JSW, mm

2.3 ± 1.7

2.8 ± 1.2

<0.001*

Lateral JSW, mm

6.1 ± 1.8

5.8 ± 1.5

0.07*

HTO, high tibial osteotomy; KL, Kellgren–Lawrence; HKA, hip–knee–ankle; WBL, weightbearing line; KOOS, Knee injury and Osteoarthritis Outcome Score; ICRS, International

Cartilage Repair Society; JSW, joint space width. P values were calculated with the Wilcoxon

matched-pairs signed-rank test except for * (Paired t-test).

31

Figure 1

Neutrophil chemotaxis

SLN

MMP3

Cellular response to interleukin-1

CCL18

CCL3

IL6

Chemokine-mediated signaling pathway

IL1B

MFAP5

MMP1

Cellular response to tumor necrosis factor

USP34

FOS

Downregulated GO terms

SCAF11

JUN

p-value (-log10)

TSNAX

Inflammatory response

COMP

Monocyte chemotaxis

p=0.05

down regulation

up regulation

-4

-2

-Log10(FDR)

fold change(log2)

Alzheimer's disease

Toll-like receptor signaling pathway

Parkinson's disease

Rheumatoid arthritis

Ribosome

TNF signaling pathway

Non-alcoholic fatty liver disease (NAFLD)

Cytokine-cytokine receptor interaction

Huntington's disease

NF-kappa B signaling pathway

10

10

Pre

Post

Pre

Post

Post

Post

fibroblasts

Pre

Post

Post

Pre

Post

CD206

✱✱

Pre

Post

CD80

CD68

Pre

Post

Pre

TNFA

Pre

✱✱

synovial intimal fibroblasts

10

CCL18

synovial subintimal fibroblasts

Post

IL6

15

Post

Pre

endothelial cells

Pre

✱✱✱

CCL3

Relative expression

IL10/GAPDH

15

Pre

✱✱✱

✱✱

20

Post

IL10

IL1RA

25

10

Pre

Post

Relative expression

CCL3/GAPDH

Pre

20

Relative expression

IL1B/GAPDH

20

T cells

20

20

Mast cells

40

IL1B

10

Relative expression

MMP13/GAPDH

30

30

Relative expression

MMP3/GAPDH

Relative expression

MMP1/GAPDH

Relative expression

ADAMTS4/GAPDH

40

MMP13

Relative expression

CD68/GAPDH

50

Relative expression

IL1RA/GAPDH

MMP3

MMP1

Relative expression

CCL18/GAPDH

ADAMTS4

smooth muscle cells

60

-Log10(FDR)

-Log10(FDR)

inflammatory macrophages

Relative expression

IL6/GAPDH

immune regulatory macrophage

80

Relative expression

CD80/GAPDH

proliferating immune cells

100

Relative expression

CD206/GAPDH

Salmonella infection

Relative percent of population

Oxidative phosphorylation

Cell population

Downregulated KEGG Pathways

Upregulated KEGG Pathways

Relative expression

TNFA/GAPDH

Pre

Post

Pre

Post

Figure 2

Pre

Synovitis score

p✱✱✱✱

< 0.001

Post

Pre

Lining cell layer

Synovial stroma

Pre

Inflammatory infiltrate

M1/Total macrophage (%)

Post

CD80

CD68

CD80

DAPI

CD68

Pre

Post

CD80

DAPI

100

p <✱✱✱

0.001

80

60

40

20

Pre

Post

Post

CD68

CD206

DAPI

CD68

CD206

DAPI

M2/Total macrophage (%)

CD206

p < ✱✱✱

0.001

50

40

30

20

10

Pre

Post

Figure 3

✱✱

ns

✱✱

CD80

Mean signal intensity

26

none

+ (low density)

C.

24

22

20

18

16

++ (high density)

++

Cartilage fragments

PBMC derived macrophage

IL1B

IL6

TNFA

CD68

CD80

CD206

✱✱

✱✱

20

10

D.

1.0

0.5

0.0

++

Cartilage fragments

1.5

1.0

0.5

++

0.0

++

++

++

Cartilage fragments

Cartilage fragments

Cartilage fragments

Cartilage fragments

Relative expression

CD206/TBP

30

Relative expression

CD80/TBP

40

Relative expression

CD68/TBP

1.5

2.0

Relative expression

TNFA/TBP

Relative expression

IL6/TBP

Relative expression

IL1B/TBP

50

++

Cartilage fragments

PBMC derived macrophage

IL-1β

IL-6

TNFα

✱✱✱

✱✱

✱✱

25

✱✱✱

ns

✱✱✱

ns

✱✱

600

30

400

20

15

10

pg/ml

pg/ml

pg/ml

20

200

10

++

Cartilage fragments

++

Cartilage fragments

++

Cartilage fragments

FLSs

IL1B

IL6

FLSs

IL-1β

TNFA

IL-6

TNFα

✱✱

0.5

0.0

++

Cartilage fragments

++

Cartilage fragments

80

✱✱

60

1.5

1.5

1.0

1.0

0.5

0.5

0.0

0.0

++

Cartilage fragments

400

pg/ml

1.0

600

pg/ml

1.5

2.0

2.0

pg/ml

2.0

Relative expression

TNFA/GAPDH

Relative expression

IL6/GAPDH

Relative expression

IL1B/GAPDH

2.5

2.5

200

20

++

Cartilage fragments

40

++

Cartilage fragments

++

Cartilage fragments

Figure 4

50

0.0

0.5

1.0

1.5

2.0

70

60

50

2.5

Relative expression

Post-CD68/GAPDH

40

20

0.5

-20

60

⊿KOOS score

⊿KOOS score

60

r=0.22 (-0.16 to 0.54)

p=0.25

1.0

1.5

2.0

Relative expression

Post-CD68/GAPDH

60

50

90

80

70

60

50

0.0

0.5

1.0

Relative expression

Post-CCL3/GAPDH

r=-0.37 (-0.65 to -0.01)

p=0.04

r=-0.08 (-0.43 to 0.29)

p=0.67

r=-0.02 (-0.38 to 0.35)

p=0.92

Relative expression

Post-CD80/GAPDH

60

40

40

20

-20

Relative expression

Post-CD206/GAPDH

20

0.5

-20

1.0

Relative expression

Post-CCL3/GAPDH

90

80

70

60

50

Relative expression

Post-CCL18/GAPDH

Relative expression

Post-CD206/GAPDH

60

100

1.5

Relative expression

Post-CD80/GAPDH

20

-20

70

40

2.5

80

Post-op KOOS score

60

80

90

100

r=0.40 (0.04 to 0.66)

p=0.03

60

⊿KOOS score

70

90

100

⊿KOOS score

80

Post-op KOOS score

90

100

⊿KOOS score

100

r=-0.01 (-0.37 to 0.36)

p=0.97

r=0.36 (0.00 to 0.64)

p=0.047

r=-0.36 (-0.64 to 0.00)

p=0.046

Post-op KOOS score

r=0.20 (-0.18 to 0.52)

p=0.28

Post-op KOOS score

Post-op KOOS score

r=0.12 (-0.26 to 0.46)

p=0.54

40

20

1.5

-20

Relative expression

Post-CCL18/GAPDH

Figure 5

Osteoarthritis

Post realignment

Synovium

Synovium

Anti inflammatory mediators

IL-10 ↑

IL-1RA ↑

CCL18 ↑

M2

macrophages

M2

macrophages ↑

IL-1β ↓

Fibroblast like

synoviocytes

M1

macrophages

synovitis ↑

IL-1β ↑

IL-6 ↑

CCL3 ↑

Fibroblast like

synoviocytes

Cartilage fragments ↑

Cartilage degradation

Cartilage fragments ↓

Cartilage degradation ↓

Cartilage

Cartilage

Cartilage

M1

macrophages ↓

synovitis ↓

IL-1β ↓

IL-6 ↓

CCL3 ↓

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る