リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Gpr19 is a circadian clock-controlled orphan GPCR with a role in modulating free-running period and light resetting capacity of the circadian clock」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Gpr19 is a circadian clock-controlled orphan GPCR with a role in modulating free-running period and light resetting capacity of the circadian clock

Yamaguchi, Yoshiaki Murai, Iori Goto, Kaoru Doi, Shotaro Zhou, Huihua Setsu, Genzui Shimatani, Hiroyuki Okamura, Hitoshi Miyake, Takahito Doi, Masao 京都大学 DOI:10.1038/s41598-021-01764-8

2021.11.17

概要

Gpr19 encodes an evolutionarily conserved orphan G-protein-coupled receptor (GPCR) with currently no established physiological role in vivo. We characterized Gpr19 expression in the suprachiasmatic nucleus (SCN), the locus of the master circadian clock in the brain, and determined its role in the context of the circadian rhythm regulation. We found that Gpr19 is mainly expressed in the dorsal part of the SCN, with its expression fluctuating in a circadian fashion. A conserved cAMP-responsive element in the Gpr19 promoter was able to produce circadian transcription in the SCN. Gpr19⁻/⁻mice exhibited a prolonged circadian period and a delayed initiation of daily locomotor activity. Gpr19 deficiency caused the downregulation of several genes that normally peak during the night, including Bmal1 and Gpr176. In response to light exposure at night, Gpr19⁻/⁻mice had a reduced capacity for light-induced phase-delays, but not for phase-advances. This defect was accompanied by reduced response of c-Fos expression in the dorsal region of the SCN, while apparently normal in the ventral area of the SCN, in Gpr19⁻/⁻ mice. Thus, our data demonstrate that Gpr19 is an SCN-enriched orphan GPCR with a distinct role in circadian regulation and may provide a potential target option for modulating the circadian clock.

この論文で使われている画像

参考文献

1. Herzog, E. D., Hermanstyne, T., Smyllie, N. J. & Hastings, M. H. Regulating the suprachiasmatic nucleus (SCN) circadian clockwork:

Interplay between cell-autonomous and circuit-level mechanisms. Cold Spring Harb. Perspect. Biol. 9, a027706 (2017).

2. LeGates, T. A., Fernandez, D. C. & Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci.

15, 443–454 (2014).

3. Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).

4. Colwell, C. S. et al. Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285,

R939-949 (2003).

5. Harmar, A. J. et al. The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109, 497–508

(2002).

6. Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J. & Herzog, E. D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476–483 (2005).

7. An, S., Irwin, R. P., Allen, C. N., Tsai, C. & Herzog, E. D. Vasoactive intestinal polypeptide requires parallel changes in adenylate

cyclase and phospholipase C to entrain circadian rhythms to a predictable phase. J. Neurophysiol. 105, 2289–2296 (2011).

8. Yamaguchi, Y. et al. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342, 85–90

(2013).

9. Parsons, M. J. et al. The regulatory factor ZFHX3 modifies circadian function in SCN via an AT motif-driven axis. Cell 162, 607–621

(2015).

10. Hatori, M. et al. Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. Elife 3, e03357 (2014).

11. Bedont, J. L. et al. Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep. 7, 609–622

(2014).

12. Doi, M. et al. Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the

suprachiasmatic nucleus. Nat. Commun. 2, 327 (2011).

13. Hayasaka, N. et al. Attenuated food anticipatory activity and abnormal circadian locomotor rhythms in Rgs16 knockdown mice.

PLoS ONE 6, e17655 (2011).

14. Doi, M. et al. Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour. Nat. Commun.

7, 10583 (2016).

15. Liu, C. & Reppert, S. M. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25, 123–128 (2000).

Scientific Reports |

(2021) 11:22406 |

https://doi.org/10.1038/s41598-021-01764-8

11

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

16. Albus, H., Vansteensel, M. J., Michel, S., Block, G. D. & Meijer, J. H. A GABAergic mechanism is necessary for coupling dissociable

ventral and dorsal regional oscillators within the circadian clock. Curr. Biol. 15, 886–893 (2005).

17. Myung, J. et al. GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time. Proc. Natl.

Acad. Sci. U. S. A. 112, E3920-3929 (2015).

18. Lall, G. S. & Biello, S. M. Neuropeptide Y, GABA and circadian phase shifts to photic stimuli. Neuroscience 120, 915–921 (2003).

19. Mazuski, C. et al. Entrainment of circadian rhythms depends on firing rates and neuropeptide release of VIP SCN neurons. Neuron

99, 555-563.e555 (2018).

20. Hamnett, R., Crosby, P., Chesham, J. E. & Hastings, M. H. Vasoactive intestinal peptide controls the suprachiasmatic circadian

clock network via ERK1/2 and DUSP4 signalling. Nat. Commun. 10, 542 (2019).

21. Patton, A. P. et al. The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian

circuit. Nat. Commun. 11, 3394 (2020).

22. Hughes, A. T. & Piggins, H. D. Behavioral responses of Vipr2-/- mice to light. J. Biol. Rhythms 23, 211–219 (2008).

23. Aten, S. et al. SynGAP is expressed in the murine suprachiasmatic nucleus and regulates circadian-gated locomotor activity and

light-entrainment capacity. Eur. J. Neurosci. 53, 732–749 (2021).

24. Cheng, H. Y. et al. Dexras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43, 715–728

(2004).

25. Han, S. et al. Na(V)1.1 channels are critical for intercellular communication in the suprachiasmatic nucleus and for normal circadian rhythms. Proc. Natl. Acad. Sci. U. S. A. 109, E368–E377 (2012).

26. O’Dowd, B. F. et al. A novel gene codes for a putative G protein-coupled receptor with an abundant expression in brain. FEBS Lett.

394, 325–329 (1996).

27. Hoffmeister-Ullerich, S. A., Susens, U. & Schaller, H. C. The orphan G-protein-coupled receptor GPR19 is expressed predominantly

in neuronal cells during mouse embryogenesis. Cell Tissue Res. 318, 459–463 (2004).

28. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

29. Riker, A. I. et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression

and metastasis. BMC Med. Genomics 1, 13 (2008).

30. Kastner, S. et al. Expression of G protein-coupled receptor 19 in human lung cancer cells is triggered by entry into S-phase and

supports G(2)-M cell-cycle progression. Mol. Cancer Res. 10, 1343–1358 (2012).

31. Rao, A. & Herr, D. R. G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells.

Biochim. Biophys. Acta Mol. Cell Res. 1864, 1318–1327 (2017).

32. Nakagawa, S., Nguyen Pham, K. T., Shao, X. & Doi, M. Time-restricted G-protein signaling pathways via GPR176, G(z), and RGS16

set the pace of the master circadian clock in the suprachiasmatic nucleus. Int. J. Mol. Sci. 21, 5055 (2020).

33. Pilorz, V., Astiz, M., Heinen, K. O., Rawashdeh, O. & Oster, H. The concept of coupling in the mammalian circadian clock network.

J. Mol. Biol. 432, 3618–3638 (2020).

34. Johnson, C. H., Elliott, J. A. & Foster, R. Entrainment of circadian programs. Chronobiol. Int. 20, 741–774 (2003).

35. Micic, G. et al. The etiology of delayed sleep phase disorder. Sleep Med. Rev. 27, 29–38 (2016).

36. Harrington, M. et al. Behavioral and neurochemical sources of variability of circadian period and phase: Studies of circadian

rhythms of npy-/- mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1306-1314 (2007).

37. Iwahana, E. et al. Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei. Eur. J. Neurosci. 19, 2281–2287 (2004).

38. Mieda, M. et al. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior

rhythm. Neuron 85, 1103–1116 (2015).

39. Shan, Y. et al. Dual-color single-cell imaging of the suprachiasmatic nucleus reveals a circadian role in network synchrony. Neuron

108, 164-179.e167 (2020).

40. DeBruyne, J. P., Weaver, D. R. & Reppert, S. M. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock.

Nat. Neurosci. 10, 543–545 (2007).

41. Fukuhara, C. et al. Phase advances of circadian rhythms in somatostatin depleted rats: Effects of cysteamine on rhythms of locomotor activity and electrical discharge of the suprachiasmatic nucleus. J. Comp. Physiol. A 175, 677–685 (1994).

42. Jakubcakova, V. et al. Light entrainment of the mammalian circadian clock by a PRKCA-dependent posttranslational mechanism.

Neuron 54, 831–843 (2007).

43. Kawaguchi, C. et al. Lipocalin-type prostaglandin D synthase regulates light-induced phase advance of the central circadian rhythm

in mice. Commun. Biol. 3, 557 (2020).

44. Hamada, T., Shibata, S., Tsuneyoshi, A., Tominaga, K. & Watanabe, S. Effect of somatostatin on circadian rhythms of firing and

2-deoxyglucose uptake in rat suprachiasmatic slices. Am. J. Physiol. 265, R1199-1204 (1993).

45. Cheng, A. H. et al. SOX2-dependent transcription in clock neurons promotes the robustness of the central circadian pacemaker.

Cell Rep. 26, 3191-3202.e3198 (2019).

46. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct.

Mol. Biol. 22, 362–369 (2015).

47. Foster, S. R. et al. Discovery of human signaling systems: Pairing peptides to G protein-coupled receptors. Cell 179, 895-908.e821

(2019).

48. Colosimo, D. A. et al. Mapping interactions of microbial metabolites with human G-protein-coupled receptors. Cell Host Microbe

26, 273-282.e277 (2019).

49. Stein, L. M., Yosten, G. L. & Samson, W. K. Adropin acts in brain to inhibit water drinking: Potential interaction with the orphan

G protein-coupled receptor, GPR19. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R476-480 (2016).

50. Hossain, M. S., Mineno, K. & Katafuchi, T. Neuronal orphan G-protein coupled receptor proteins mediate plasmalogens-induced

activation of ERK and Akt signaling. PLoS ONE 11, e0150846 (2016).

51. Thapa, D. et al. Adropin regulates pyruvate dehydrogenase in cardiac cells via a novel GPCR-MAPK-PDK4 signaling pathway.

Redox Biol. 18, 25–32 (2018).

52. Wen, S. et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat. Neurosci. 23,

456–467 (2020).

53. Park, J. et al. Single-cell transcriptional analysis reveals novel neuronal phenotypes and interaction networks involved in the central

circadian clock. Front. Neurosci. 10, 481 (2016).

54. Morris, E. L. et al. Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network. EMBO J.

40, e108614 (2021).

55. Xu, P. et al. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron

109, 3268-3282.e6 (2021).

56. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE

guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

57. Shigeyoshi, Y. et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1

transcript. Cell 91, 1043–1053 (1997).

58. Nakanishi, H., Higuchi, Y., Kawakami, S., Yamashita, F. & Hashida, M. piggyBac transposon-mediated long-term gene expression

in mice. Mol. Ther. 18, 707–714 (2010).

Scientific Reports |

Vol:.(1234567890)

(2021) 11:22406 |

https://doi.org/10.1038/s41598-021-01764-8

12

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

59. Doi, M. et al. Non-coding cis-element of Period2 is essential for maintaining organismal circadian behaviour and body temperature

rhythmicity. Nat. Commun. 10, 2563 (2019).

Acknowledgements

The authors thank Ichie Nishimura for technical support. This work was supported in part by research Grants

from the Project for Elucidating and Controlling Mechanisms of Ageing and Longevity, the Basis for Supporting Innovative Drug Discovery and Life Science Research program of the Japan Agency for Medical Research

and Development (JP21gm5010002 and JP21am0101092), the Ministry of Education, Culture, Sports, Science

and Technology of Japan (17H01524, 18H04015, 20B307), the Kobayashi Foundation, and the Kusunoki 125 of

Kyoto University 125th Anniversary Fund.

Author contributions

M.D. conceived the project; M.D. and H.O. designed the research; Y.Y., I.M., and K.G. performed experiments

in collaboration with S.D., H.Z., G.S., H.S., and T.M.; M.D. and Y.Y. wrote the paper with input from all authors.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​021-​01764-8.

Correspondence and requests for materials should be addressed to H.O. or M.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

Scientific Reports |

(2021) 11:22406 |

https://doi.org/10.1038/s41598-021-01764-8

13

Vol.:(0123456789)

...

参考文献をもっと見る