リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Role of α2δ3 in Cellular Synchronization of the Suprachiasmatic Nucleus Under Constant Light Conditions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Role of α2δ3 in Cellular Synchronization of the Suprachiasmatic Nucleus Under Constant Light Conditions

Matsuo, Masahiro Seo, Kazuyuki Mizuguchi, Naoki Yamazaki, Fumiyoshi Urabe, Shoichi Yamada, Naoto Doi, Masao Tominaga, Keiko Okamura, Hitoshi 京都大学 DOI:10.1016/j.neuroscience.2021.02.016

2021.05

概要

By the effort to identify candidate signaling molecules important for the formation of robust circadian rhythms in the suprachiasmatic nucleus (SCN), the mammalian circadian center, here we characterize the role of α2δ proteins, synaptic molecules initially identified as an auxiliary subunit of the voltage dependent calcium channel, in circadian rhythm formation. In situ hybridization study demonstrated that type 3 α2δ gene (α2δ3) was strongly expressed in the SCN. Mice without this isoform (Cacna2d3⁻/⁻) did not maintain proper circadian locomotor activity rhythms under a constant light (LL) condition, whereas under a constant dark (DD) condition, these mice showed a similar period length and similar light-responsiveness as compared to wild type mice. Reflecting this behavioral phenotype, Cacna2d3⁻/⁻ mice showed a severely impaired Per1 expression rhythm in the SCN under LL, but not under DD. Cultured SCN slices from Per1-luc transgenic Cacna2d3⁻/⁻ mice revealed reduced synchrony of Per1-luc gene expression rhythms among SCN neurons. These findings suggest that α2δ3 is essential for synchronized cellular oscillations in the SCN and thereby contributes to enhancing the sustainability of circadian rhythms in behavior.

この論文で使われている画像

参考文献

Ablinger C, Geisler SM, Stanika RI, Klein CT, Obermair GJ (2020)

Neuronal a(2)d proteins and brain disorders. Pflugers Arch

472:845–863.

Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the

mouse: retinal innervation, intrinsic organization and efferent

projections. Brain Res 916:172–191.

Alles SRA, Cain SM, Snutch TP (2020) Pregabalin as a pain

therapeutic: beyond calcium channels. Front Cell Neurosci 14:83.

Aton SJ, Huettner JE, Straume M, Herzog E (2006) GABA and Gi/o

differentially control circadian rhythms and synchrony in clock

neurons. Proc Natl Acad Sci USA 103:19188–19193.

Beeson KA, Beeson R, Westbrook GL, Schnell E (2020) a2d-2

protein controls structure and function at the cerebellar climbing

fiber synapse. J Neurosci 40:2403–2415.

Campiglio M, Flucher BE (2015) The role of auxiliary subunits for the

functional diversity of voltage-gated calcium channels. J Cell

Physiol 230:2019–2031.

Cole RL, Lechner SM, Williams ME, Prodanovich P, Bleicher L,

Varney MA, Gu G (2005) Differential distribution of voltage-gated

calcium channel alpha-2 delta (alpha2delta) subunit mRNAcontaining cells in the rat central nervous system and the dorsal

root ganglia. J Comp Neurol 491:246–269.

Cloues RK, Sather WA (2003) Afterhyperpolarization regulates firing

rate in neurons of the suprachiasmatic nucleus. J Neurosci

23:1593–1604.

Colwell CS (2011) Linking neural activity and molecular oscillations in

the SCN. Nat Rev Neurosci 12:553–569.

Daan S, Pittendrigh CS (1976) A Functional analysis of circadian

pacemakers in nocturnal rodents. III. Heavy water and constant

light: homeostasis of frequency?. J Comp Physiol A 106:267–290.

Dickman DK, Kurshan PT, Schwarz TL (2008) Mutations in a

Drosophila alpha2delta voltage-gated calcium channel subunit

reveal a crucial synaptic function. J Neurosci 28:31–38.

Doi M, Ishida A, Miyake A, Sato M, Komatsu R, Yamazaki F, Kimura

I, Tsuchiya S, et al. (2011) Circadian regulation of intracellular Gprotein signalling mediates intercellular synchrony and rhythmicity

in the suprachiasmatic nucleus. Nat Commun 2:327.

Doi M, Shimatani H, Atobe Y, Murai I, Hayashi H, Takahashi Y, Fustin

JM, Yamaguchi Y, et al. (2019) Non-coding cis-element of

Period2 is essential for maintaining organismal circadian

behaviour and body temperature rhythmicity. Nat Commun

10:2563.

Dolphin AC (2012) Calcium channel auxiliary a2d and b subunits:

trafficking and one step beyond. Nat Rev Neurosci 13:542–555.

Dooley DJ, Taylor CP, Donevan S, Feltner D (2007) Ca2+ channel

alpha2delta ligands: novel modulators of neurotransmission.

Trends Pharmacol Sci 28:75–82.

Dworkin RH, O’Connor AB, Backonja M, Farrar JT, Finnerup NB,

Jensen TS, Kalso EA, Loeser JD, et al. (2007) Pharmacologic

management

of

neuropathic

pain:

evidence-based

recommendations. Pain 132:237–251.

Eroglu C, Allen NJ, Susman MW, O’Rourke NA, Park CY, Ozkan E,

Chakraborty C, Mulinyawe SB, et al. (2009) Gabapentin receptor

alpha2delta-1 is a neuronal thrombospondin receptor responsible

for excitatory CNS synaptogenesis. Cell 139:380–392.

Fell B, Eckrich S, Blum K, Eckrich T, Hecker D, Obermair GJ,

Mu¨nkner S, Flockerzi V, et al. (2016) a2d2 Controls the function

and trans-synaptic coupling of Cav1.3 channels in mouse inner

hair cells and is essential for normal hearing. J Neurosci

36:11024–11036.

Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su TZ, Bramwell S,

Corradini L, et al. (2006) Identification of the alpha2-delta-1

subunit of voltage-dependent calcium channels as a molecular

target for pain mediating the analgesic actions of pregabalin. Proc

Natl Acad Sci U S A 103:17537–17542.

Gong HC, Hang J, Kohler W, Li L, Su TZ (2001) Tissue-specific

expression and gabapentin-binding properties of calcium channel

alpha2delta subunit subtypes. J Membr Biol 184:35–43.

Harrisingh MC, Nitabach MN (2008) Circadian rhythms. Integrating

circadian timekeeping with cellular physiology. Science

320:879–880.

Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH (2017)

Regulating the suprachiasmatic nucleus (SCN) circadian

clockwork: interplay between cell-autonomous and circuit-level

mechanisms. Cold Spring Harb Perspect Biol 9.

Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA (2012) a2d

expression sets presynaptic calcium channel abundance and

release probability. Nature 486:122–125.

Iftikhar IH, Alghothani L, Trotti LM (2017) Gabapentin enacarbil,

pregabalin and rotigotine are equally effective in restless legs

syndrome: a comparative meta-analysis. Eur J Neurol

24:1446–1456.

Kim DY, Choi HJ, Kim JS, Kim YS, Jeong DU, Shin HC, Kim MJ, Han

HC, et al. (2005) Voltage-gated calcium channels play crucial

roles in the glutamate-induced phase shifts of the rat

suprachiasmatic circadian clock. Eur J Neurosci 21:

1215–1222.

Kurshan PT, Oztan A, Schwarz TL (2009) Presynaptic alpha2delta-3

is required for synaptic morphogenesis independent of its

Ca2+-channel functions. Nat Neurosci 12:1415–1423.

Ly CV, Yao CK, Verstreken P, Ohyama T, Bellen HJ (2008)

straightjacket is required for the synaptic stabilization of

cacophony, a voltage-gated calcium channel alpha1 subunit. J

Cell Biol 181:157–170.

Maywood ES, Reddy AB, Wong GK, O’Neill JS, O’Brien JA,

McMahon DG, Harmar AJ, Okamura H, et al. (2006)

Synchronization

and

maintenance

of

timekeeping

in

suprachiasmatic circadian clock cells by neuropeptidergic

signaling. Curr Biol 16:599–605.

Mohawk JA, Green CB, Takahashi JS (2012) Central and

peripheral circadian clocks in mammals. Annu Rev Neurosci

35:445–462.

Nahm SS, Farnell YZ, Griffith W, Earnest DJ (2005) Circadian

regulation and function of voltage-dependent calcium channels in

the suprachiasmatic nucleus. J Neurosci 25:9304–9308.

Neely GG, Hess A, Costigan M, Keene AC, Goulas S, Langeslag M,

Griffin RS, Belfer I, et al. (2010) A genome-wide Drosophila

screen for heat nociception identifies a2d3 as an evolutionarily

conserved pain gene. Cell 143:628–638.

Nitabach MN, Blau J, Holmes TC (2002) Electrical silencing of

Drosophila pacemaker neurons stops the free-running circadian

clock. Cell 109:485–495.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

10

M. Matsuo et al. / Neuroscience 461 (2021) 1–10

Ohta H, Yamazaki S, McMahon DG (2005) Constant light

desynchronizes mammalian clock neurons. Nat Neurosci

8:267–269.

Okamura H (2007) Suprachiasmatic nucleus clock time in the

mammalian circadian system. Cold Spring Harb Symp Quant

Biol 72:551–556.

Pennartz CM, de Jeu MT, Bos NP, Schaap J, Geurtsen AM (2002)

Diurnal modulation of pacemaker potentials and calcium current

in the mammalian circadian clock. Nature 416:286–290.

Reppert SM, Weaver DR (2002) Coordination of circadian timing in

mammals. Nature 418:935–941.

Schmutz I, Chavan R, Ripperger JA, Maywood ES, Langwieser N,

Jurik A, Stauffer A, Delorme JE, et al. (2014) A specific role for the

REV-ERBa-controlled L-Type Voltage-Gated Calcium Channel

CaV1.2 in resetting the circadian clock in the late night. J Biol

Rhythms 29:288–298.

Schwartz WJ, Gainer H (1977) Suprachiasmatic nucleus: use of 14Clabeled deoxyglucose uptake as a functional marker. Science

197:1089–1091.

Shibata S, Liou S, Ueki S, Oomura Y (1984) Influence of

environmental light-dark cycle and enucleation on activity of

suprachiasmatic neurons in slice preparations. Brain Res

302:75–81.

Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H,

Moriya T, Shibata S, Loros JJ, Dunlap JC, Okamura H (1997)

Light-induced resetting of a mammalian circadian clock is

associated with rapid induction of the mPer1 transcript. Cell

91:1043–1053.

Siepka SM, Takahashi JS (2005) Methods to record circadian rhythm

wheel running activity in mice. Methods Enzymol 393:230–239.

Steinlechner S, Jacobmeier B, Scherbarth F, Dernbach H, Kruse F,

Albrecht U (2002) Robust circadian rhythmicity of Per1 and Per2

mutant mice in constant light, and dynamics of Per1 and Per2

gene expression under long and short photoperiods. J Biol

Rhythms 17:202–209.

Tominaga-Yoshino K, Ueyama T, Okamura H: Suprachiasmatic

nucleus cultures that maintain rhythmic properties in vitro. In

Methods in Molecular Biology, vol. 362: Circadian Rhythms:

Methods and Protocols, Edited by E. Rosato, Humana Press Inc.,

Totowa, NJ, 2007, pp481-492.

Van den Pol AN (1980) The hypothalamic suprachiasmatic nucleus of

rat: intrinsic anatomy. J Comp Neurol 191:661–702.

Winkelman JW, Armstrong MJ, Allen RP, Chaudhuri KR, Ondo W,

Trenkwalder C, Zee PC, Gronseth GS, et al. (2016) Practice

guideline summary: treatment of restless legs syndrome in adults:

Report of the Guideline Development, Dissemination, and

Implementation Subcommittee of the American Academy of

Neurology. Neurology 87:2585–2593.

Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M,

Okamura H (2003) Synchronization of cellular clocks in the

suprachiasmatic nucleus. Science 302:1408–1412.

Yamaguchi S, Mitsui S, Miyake S, Yan L, Onishi H, Yagita K, Suzuki

M, Shibata S, et al. (2000) The 5’ upstream region of mPer1 gene

contains two promoters and is responsible for circadian

oscillation. Curr Biol 10:873–876.

Yu GD, Rusak B, Piggins HD (1993) Regulation of melatoninsensitivity and firing-rate rhythms of hamster suprachiasmatic

nucleus neurons: constant light effects. Brain Res 602:191–199.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.neuroscience.2021.02.016.

(Received 7 October 2020, Accepted 10 February 2021)

(Available online 18 February 2021)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る