リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Importance of Renalase Gene in Exercise-Enhanced Glucose Tolerance via The Diversity of Microbiota」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Importance of Renalase Gene in Exercise-Enhanced Glucose Tolerance via The Diversity of Microbiota

Fang Hui 筑波大学 DOI:10.15068/0002008206

2023.09.04

概要

Hyperglycemia is the typical character for diabetes [1]. Furthermore, it is the main
reason to result in many complications, such as heart attacks, strokes, kidney failure,
and blindness [2-4]. The causes of hyperglycemia and damages are showed in Figure 1
and 2. Nowadays, diabetes has been become the one another killer for human health
after cancers. According to the World Health Organization, it directly caused 1.5 million
deaths in 2019. Notably, the incidence of diabetes has shown a trend towards younger
people in recent years [5, 6]. the number of adults with diabetes will reach 783 million
by 2045 according to the report from International Diabetes Federation. Among them,
over 95% diabetes belong to type 2 diabetes (T2D) [7]. As we all known, number of
factors including genetics, obesity, and physical inactivity trigger T2D [8, 9]. The
complexity of its pathogenesis and the prevalence of its existence determine the
difficulty of diagnose and treatment. Hence, continuing to dig the underling mechanism
of hyperglycemia, regulating blood glucose (BG) more effectively and rationally to is
still the facing challenge to decrease the incidence of T2D and its complications.
According to the latest guidance statement from American College of Sports
Medicine and American Diabetes Association, T2D are recommended to do exercise
(Figure 3). Regular aerobic exercise training (e.g. jogging, swimming) can increase
insulin sensitivity, improve BG in adults with T2D, reduce the time of hyperglycemia;
resistance training (e.g. push-ups, resistance bands) improves glucose metabolism in
elderly patients with T2D [10]. Of course, diet therapy is also another environmental
factor for alleviating T2D. Recent studies showed that a high-fiber diet can alleviate
body weight and BG, thereby reducing the risk of T2D and its complications [11, 12].
Hence, in clinical treatment, exercise therapy, together with diet therapy and drug
therapy is also known as the "troika" for the treatment of T2D.
Gut microbiota (GM) is closely related to T2D was reported recently [13-15].
Unhealthy lifestyle will destroy the balance of GM. ...

この論文で使われている画像

参考文献

1.

Solis-Herrera, C., et al., Pathogenesis of Type 2 Diabetes Mellitus, in Endotext,

K.R. Feingold, et al., Editors. 2000, MDText.com, Inc.Copyright © 2000-2021,

MDText.com, Inc.: South Dartmouth (MA).

2.

Jin, Q. and R.C.W. Ma, Metabolomics in Diabetes and Diabetic Complications:

Insights from Epidemiological Studies. Cells, 2021. 10(11).

3.

Meyhöfer, S. and S.M. Schmid, [Diabetes complications - diabetes and the

nervous system]. Dtsch Med Wochenschr, 2020. 145(22): p. 1599-1605.

4.

Huebschmann, A.G., et al., Sex differences in the burden of type 2 diabetes and

cardiovascular risk across the life course. Diabetologia, 2019. 62(10): p. 17611772.

5.

Lake, A.J., A. Bo, and M. Hadjiconstantinou, Developing and Evaluating

Behaviour Change Interventions for People with Younger-Onset Type 2

Diabetes: Lessons and Recommendations from Existing Programmes. Curr

Diab Rep, 2021. 21(12): p. 59.

6.

Andersson, C. and R.S. Vasan, Epidemiology of cardiovascular disease in young

individuals. Nat Rev Cardiol, 2018. 15(4): p. 230-240.

7.

Henning, R.J., Type-2 diabetes mellitus and cardiovascular disease. Future

Cardiol, 2018. 14(6): p. 491-509.

8.

Martín-Peláez, S., M. Fito, and O. Castaner, Mediterranean Diet Effects on Type

2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A

Review. Nutrients, 2020. 12(8).

9.

Laakso, M., Biomarkers for type 2 diabetes. Mol Metab, 2019. 27s(Suppl): p.

S139-s146.

10.

Kanaley, J.A., et al., Exercise/Physical Activity in Individuals with Type 2

Diabetes: A Consensus Statement from the American College of Sports

Medicine. Med Sci Sports Exerc, 2022. 54(2): p. 353-368.

11.

Guess, N.D., Dietary Interventions for the Prevention of Type 2 Diabetes in

High-Risk Groups: Current State of Evidence and Future Research Needs.

81

Nutrients, 2018. 10(9).

12.

Vlachos, D., et al., Glycemic Index (GI) or Glycemic Load (GL) and Dietary

Interventions for Optimizing Postprandial Hyperglycemia in Patients with T2

Diabetes: A Review. Nutrients, 2020. 12(6).

13.

Salamone, D., A.A. Rivellese, and C. Vetrani, The relationship between gut

microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role

of dietary fibre. Acta Diabetol, 2021. 58(9): p. 1131-1138.

14.

Saji, N., et al., The Association between Cerebral Small Vessel Disease and the

Gut Microbiome: A Cross-Sectional Analysis. J Stroke Cerebrovasc Dis, 2021.

30(3): p. 105568.

15.

Arora, A., et al., Unravelling the involvement of gut microbiota in type 2

diabetes mellitus. Life Sci, 2021. 273: p. 119311.

16.

Moszak, M., M. Szulińska, and P. Bogdański, You Are What You Eat-The

Relationship between Diet, Microbiota, and Metabolic Disorders-A Review.

Nutrients, 2020. 12(4).

17.

Crovesy, L., T. El-Bacha, and E.L. Rosado, Modulation of the gut microbiota

by probiotics and symbiotics is associated with changes in serum metabolite

profile related to a decrease in inflammation and overall benefits to metabolic

health: a double-blind randomized controlled clinical trial in women with

obesity. Food Funct, 2021. 12(5): p. 2161-2170.

18.

Yoon, H.S., et al., Akkermansia muciniphila secretes a glucagon-like peptide-1inducing protein that improves glucose homeostasis and ameliorates metabolic

disease in mice. Nat Microbiol, 2021. 6(5): p. 563-573.

19.

Motiani, K.K., et al., Exercise Training Modulates Gut Microbiota Profile and

Improves Endotoxemia. Med Sci Sports Exerc, 2020. 52(1): p. 94-104.

20.

Aragón-Vela, J., et al., Impact of Exercise on Gut Microbiota in Obesity.

Nutrients, 2021. 13(11).

21.

Allen, J.M., et al., Exercise Alters Gut Microbiota Composition and Function in

Lean and Obese Humans. Med Sci Sports Exerc, 2018. 50(4): p. 747-757.

22.

Benson, A.K., et al., Individuality in gut microbiota composition is a complex

82

polygenic trait shaped by multiple environmental and host genetic factors. Proc

Natl Acad Sci U S A, 2010. 107(44): p. 18933-8.

23.

Xu, J., et al., Renalase is a novel, soluble monoamine oxidase that regulates

cardiac function and blood pressure. J Clin Invest, 2005. 115(5): p. 1275-80.

24.

Gao, Y., et al., Renalase is a novel tissue and serological biomarker in pancreatic

ductal adenocarcinoma. PLoS One, 2021. 16(9): p. e0250539.

25.

Guo, X., et al., Inhibition of renalase drives tumour rejection by promoting T

cell activation. Eur J Cancer, 2022. 165: p. 81-96.

26.

Wang, F., et al., Renalase might be associated with hypertension and insulin

resistance in Type 2 diabetes. Ren Fail, 2014. 36(4): p. 552-6.

27.

Buraczynska, M., et al., Renalase gene Glu37Asp polymorphism affects

susceptibility to diabetic retinopathy in type 2 diabetes mellitus. Acta Diabetol,

2021. 58(12): p. 1595-1602.

28.

Buse, J.B., et al., 2019 Update to: Management of Hyperglycemia in Type 2

Diabetes, 2018. A Consensus Report by the American Diabetes Association

(ADA) and the European Association for the Study of Diabetes (EASD).

Diabetes Care, 2020. 43(2): p. 487-493.

29.

Taylor, S.I., Z.S. Yazdi, and A.L. Beitelshees, Pharmacological treatment of

hyperglycemia in type 2 diabetes. J Clin Invest, 2021. 131(2).

30.

Gandhi, G.Y. and A.D. Mooradian, Management of Hyperglycemia in Older

Adults with Type 2 Diabetes. Drugs Aging, 2022. 39(1): p. 39-58.

31.

Ceriello, A., et al., Glycaemic management in diabetes: old and new approaches.

Lancet Diabetes Endocrinol, 2022. 10(1): p. 75-84.

32.

Piché, M.E., A. Tchernof, and J.P. Després, Obesity Phenotypes, Diabetes, and

Cardiovascular Diseases. Circ Res, 2020. 126(11): p. 1477-1500.

33.

Greenwood, M., et al., Transcription factor Creb3l1 regulates the synthesis of

prohormone convertase enzyme PC1/3 in endocrine cells. J Neuroendocrinol,

2020. 32(4): p. e12851.

34.

Lafferty, R.A., et al., Proglucagon-Derived Peptides as Therapeutics. Front

Endocrinol (Lausanne), 2021. 12: p. 689678.

83

35.

Ramzy, A. and T.J. Kieffer, Altered islet prohormone processing: a cause or

consequence of diabetes? Physiol Rev, 2022. 102(1): p. 155-208.

36.

Saeedi, P., et al., Global and regional diabetes prevalence estimates for 2019 and

projections for 2030 and 2045: Results from the International Diabetes

Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract, 2019. 157: p.

107843.

37.

Okamura, T., et al., Ectopic fat obesity presents the greatest risk for incident

type 2 diabetes: a population-based longitudinal study. Int J Obes (Lond), 2019.

43(1): p. 139-148.

38.

Wu, H. and C.M. Ballantyne, Metabolic Inflammation and Insulin Resistance

in Obesity. Circ Res, 2020. 126(11): p. 1549-1564.

39.

Ahmed, B., R. Sultana, and M.W. Greene, Adipose tissue and insulin resistance

in obese. Biomed Pharmacother, 2021. 137: p. 111315.

40.

Zatterale, F., et al., Chronic Adipose Tissue Inflammation Linking Obesity to

Insulin Resistance and Type 2 Diabetes. Front Physiol, 2019. 10: p. 1607.

41.

Huang, X., et al., The PI3K/AKT pathway in obesity and type 2 diabetes. Int J

Biol Sci, 2018. 14(11): p. 1483-1496.

42.

Chen, Q., et al., JNK/PI3K/Akt signaling pathway is involved in myocardial

ischemia/reperfusion injury in diabetic rats: effects of salvianolic acid A

intervention. Am J Transl Res, 2016. 8(6): p. 2534-48.

43.

Fatima, S.S., et al., Polymorphism of the renalase gene in gestational diabetes

mellitus. Endocrine, 2017. 55(1): p. 124-129.

44.

Teimoori, B., et al., Renalase rs10887800 polymorphism is associated with

severe pre-eclampsia in southeast Iranian women. J Cell Biochem, 2019.

120(3): p. 3277-3285.

45.

Zhang, F., et al., Association of renalase gene polymorphisms with the risk of

hypertensive disorders of pregnancy in northeastern Han Chinese population.

Gynecol Endocrinol, 2020. 36(11): p. 986-990.

46.

Tokinoya, K., et al., Influence of acute exercise on renalase and its regulatory

mechanism. Life Sci, 2018. 210: p. 235-242.

84

47.

Tokinoya, K., et al., Gene expression level of renalase in the skeletal muscles is

increased with high-intensity exercise training in mice on a high-fat diet.

Physiol Int, 2021.

48.

Tokinoya, K., et al., Moderate-intensity exercise increases renalase levels in the

blood and skeletal muscle of rats. FEBS Open Bio, 2020. 10(6): p. 1005-1012.

49.

Czarkowska-Paczek, B., et al., Exercise differentially regulates renalase

expression in skeletal muscle and kidney. Tohoku J Exp Med, 2013. 231(4): p.

321-9.

50.

Luo, M., et al., Aerobic Exercise Training Improves Renal Injury in

Spontaneously Hypertensive Rats by Increasing Renalase Expression in

Medulla. Front Cardiovasc Med, 2022. 9: p. 922705.

51.

Aoki, K., et al., Renalase is localized to the small intestine crypt and expressed

upon the activation of NF-κB p65 in mice model of fasting-induced oxidative

stress. Life Sci, 2021. 267: p. 118904.

52.

Pointer, T.C., F.S. Gorelick, and G.V. Desir, Renalase: A Multi-Functional

Signaling Molecule with Roles in Gastrointestinal Disease. Cells, 2021. 10(8).

53.

Czerwińska, K., R. Poręba, and P. Gać, Renalase-A new understanding of its

enzymatic and non-enzymatic activity and its implications for future research.

Clin Exp Pharmacol Physiol, 2022. 49(1): p. 3-9.

54.

Mitsuoka, T., Intestinal flora and aging. Nutr Rev, 1992. 50(12): p. 438-46.

55.

Ibal, J.C., et al., Review of the Current State of Freely Accessible Web Tools for

the Analysis of 16S rRNA Sequencing of the Gut Microbiome. Int J Mol Sci,

2022. 23(18).

56.

Gao, B., et al., An Introduction to Next Generation Sequencing Bioinformatic

Analysis in Gut Microbiome Studies. Biomolecules, 2021. 11(4).

57.

Abellan-Schneyder, I., et al., Primer, Pipelines, Parameters: Issues in 16S rRNA

Gene Sequencing. mSphere, 2021. 6(1).

58.

Korostin, D., et al., Comparative analysis of novel MGISEQ-2000 sequencing

platform vs Illumina HiSeq 2500 for whole-genome sequencing. PLoS One,

2020. 15(3): p. e0230301.

85

59.

Nguyen, N.P., et al., A perspective on 16S rRNA operational taxonomic unit

clustering using sequence similarity. NPJ Biofilms Microbiomes, 2016. 2: p.

16004.

60.

<ijs-44-4-846.pdf>.

61.

Hall, M. and R.G. Beiko, 16S rRNA Gene Analysis with QIIME2. Methods Mol

Biol, 2018. 1849: p. 113-129.

62.

Poos, M.S., S.C. Walker, and D.A. Jackson, Functional-diversity indices can be

driven by methodological choices and species richness. Ecology, 2009. 90(2):

p. 341-7.

63.

Ramette, A., Multivariate analyses in microbial ecology. FEMS Microbiol Ecol,

2007. 62(2): p. 142-60.

64.

Mori, A.S., F. Isbell, and R. Seidl, β-Diversity, Community Assembly, and

Ecosystem Functioning. Trends Ecol Evol, 2018. 33(7): p. 549-564.

65.

Lozupone, C.A., et al., Quantitative and qualitative beta diversity measures lead

to different insights into factors that structure microbial communities. Appl

Environ Microbiol, 2007. 73(5): p. 1576-85.

66.

Chang, F., S. He, and C. Dang, Assisted Selection of Biomarkers by Linear

Discriminant Analysis Effect Size (LEfSe) in Microbiome Data. J Vis Exp,

2022(183).

67.

Thingholm, L.B., et al., Obese Individuals with and without Type 2 Diabetes

Show Different Gut Microbial Functional Capacity and Composition. Cell Host

Microbe, 2019. 26(2): p. 252-264.e10.

68.

Turnbaugh, P.J., et al., A core gut microbiome in obese and lean twins. Nature,

2009. 457(7228): p. 480-4.

69.

Gurung, M., et al., Role of gut microbiota in type 2 diabetes pathophysiology.

EBioMedicine, 2020. 51: p. 102590.

70.

Han, J.L. and H.L. Lin, Intestinal microbiota and type 2 diabetes: from

mechanism insights to therapeutic perspective. World J Gastroenterol, 2014.

20(47): p. 17737-45.

71.

Qin, J., et al., A metagenome-wide association study of gut microbiota in type

86

2 diabetes. Nature, 2012. 490(7418): p. 55-60.

72.

Zhao, J., et al., Dietary Fiber Increases Butyrate-Producing Bacteria and

Improves the Growth Performance of Weaned Piglets. J Agric Food Chem, 2018.

66(30): p. 7995-8004.

73.

Couto, M.R., et al., Microbiota-derived butyrate regulates intestinal

inflammation: Focus on inflammatory bowel disease. Pharmacol Res, 2020.

159: p. 104947.

74.

Mohammadi, S.O., et al., The impact of Helicobacter pylori infection on gut

microbiota-endocrine system axis; modulation of metabolic hormone levels and

energy homeostasis. J Diabetes Metab Disord, 2020. 19(2): p. 1855-1861.

75.

Tanase, D.M., et al., Role of Gut Microbiota on Onset and Progression of

Microvascular Complications of Type 2 Diabetes (T2DM). Nutrients, 2020.

12(12).

76.

Wang, P.X., et al., Gut microbiota and metabolic syndrome. Chin Med J (Engl),

2020. 133(7): p. 808-816.

77.

Everard, A., et al., Responses of gut microbiota and glucose and lipid

metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice.

Diabetes, 2011. 60(11): p. 2775-86.

78.

Wang, Y., et al., Composite probiotics alleviate type 2 diabetes by regulating

intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed

Pharmacother, 2020. 125: p. 109914.

79.

Kaji, I., S. Karaki, and A. Kuwahara, Short-chain fatty acid receptor and its

contribution to glucagon-like peptide-1 release. Digestion, 2014. 89(1): p. 31-6.

80.

Tazoe, H., et al., Roles of short-chain fatty acids receptors, GPR41 and GPR43

on colonic functions. J Physiol Pharmacol, 2008. 59 Suppl 2: p. 251-62.

81.

Benítez-Páez, A., et al., Sex, Food, and the Gut Microbiota: Disparate Response

to Caloric Restriction Diet with Fiber Supplementation in Women and Men. Mol

Nutr Food Res, 2021. 65(8): p. e2000996.

82.

Barton, W., et al., The microbiome of professional athletes differs from that of

more sedentary subjects in composition and particularly at the functional

87

metabolic level. Gut, 2018. 67(4): p. 625-633.

83.

McCabe, L.R., et al., Exercise prevents high fat diet-induced bone loss, marrow

adiposity and dysbiosis in male mice. Bone, 2019. 118: p. 20-31.

84.

Aoki, T., et al., The Effect of Voluntary Exercise on Gut Microbiota in Partially

Hydrolyzed Guar Gum Intake Mice under High-Fat Diet Feeding. Nutrients,

2020. 12(9).

85.

Kulecka, M., et al., The composition and richness of the gut microbiota

differentiate the top Polish endurance athletes from sedentary controls. Gut

Microbes, 2020. 11(5): p. 1374-1384.

86.

Lahiri, S., et al., The gut microbiota influences skeletal muscle mass and

function in mice. Sci Transl Med, 2019. 11(502).

87.

Domínguez-Balmaseda, D. and G. García-Pérez-de-Sevilla, The Relationship

between the Gut Microbiota and Exercise: A Narrative Review. Hygiene, 2022.

2(4): p. 152-162.

88.

Kumar, J., K. Rani, and C. Datt, Molecular link between dietary fibre, gut

microbiota and health. Mol Biol Rep, 2020. 47(8): p. 6229-6237.

89.

Wang, K., et al., Parabacteroides distasonis Alleviates Obesity and Metabolic

Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep,

2019. 26(1): p. 222-235.e5.

90.

Schoeler, M. and R. Caesar, Dietary lipids, gut microbiota and lipid metabolism.

Rev Endocr Metab Disord, 2019. 20(4): p. 461-472.

91.

Larsen, N., et al., Gut microbiota in human adults with type 2 diabetes differs

from non-diabetic adults. PLoS One, 2010. 5(2): p. e9085.

92.

Lê, K.A., et al., Alterations in fecal Lactobacillus and Bifidobacterium species

in type 2 diabetic patients in Southern China population. Front Physiol, 2012.

3: p. 496.

93.

Suzuki, T.A. and R.E. Ley, The role of the microbiota in human genetic

adaptation. Science, 2020. 370(6521).

94.

Goodrich, J.K., et al., The Relationship Between the Human Genome and

Microbiome Comes into View. Annu Rev Genet, 2017. 51: p. 413-433.

88

95.

Liu, X., et al., Metagenome-genome-wide association studies reveal human

genetic impact on the oral microbiome. Cell Discov, 2021. 7(1): p. 117.

96.

de Moura, E.D.M., et al., Diet-induced obesity in animal models: points to

consider and influence on metabolic markers. Diabetol Metab Syndr, 2021.

13(1): p. 32.

97.

Kleinert, M., et al., Animal models of obesity and diabetes mellitus. Nat Rev

Endocrinol, 2018. 14(3): p. 140-162.

98.

King, A.J., The use of animal models in diabetes research. Br J Pharmacol, 2012.

166(3): p. 877-94.

99.

<56_263.pdf>.

100. Fraulob, J.C., et al., A Mouse Model of Metabolic Syndrome: Insulin Resistance,

Fatty Liver and Non-Alcoholic Fatty Pancreas Disease (NAFPD) in C57BL/6

Mice Fed a High Fat Diet. J Clin Biochem Nutr, 2010. 46(3): p. 212-23.

101.

Heydemann, A., An Overview of Murine High Fat Diet as a Model for Type 2

Diabetes Mellitus. J Diabetes Res, 2016. 2016: p. 2902351.

102.

Kleinert, M., et al., Animal models of obesity and diabetes mellitus. Nat Rev

Endocrinol, 2018. 14(3): p. 140-162.

103.

Tokinoya, K., et al., Denervation-induced muscle atrophy suppression in

renalase-deficient mice via increased protein synthesis. Physiol Rep, 2020.

8(15): p. e14475.

104.

Tokinoya, K., et al., Effects of renalase deficiency on liver fibrosis markers in a

nonalcoholic steatohepatitis mouse model. Mol Med Rep, 2021. 23(3).

105.

Islam, M.R., et al., Weight Gain, Glucose Tolerance, and the Gut Microbiome

of Male C57BL/6J Mice Housed on Corncob or Paper Bedding and Fed Normal

or High-Fat Diet. J Am Assoc Lab Anim Sci, 2021. 60(4): p. 407-421.

106.

Liang, H., et al., A high-fat diet and high-fat and high-cholesterol diet may affect

glucose and lipid metabolism differentially through gut microbiota in mice. Exp

Anim, 2021. 70(1): p. 73-83.

107.

Chacko, E., Blunting post-meal glucose surges in people with diabetes. World J

Diabetes, 2016. 7(11): p. 239-42.

89

108.

Lin, X.J., H.F. Yang, and X.H. Wang, [Effects of aerobic exercise and dieting

on chemerin and its receptor CMKLR1 in the livers of type 2 diabetic rats].

Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2017. 33(5): p. 426-430.

109.

McDonald, S.M., et al., The effects of aerobic exercise on markers of maternal

metabolism during pregnancy. Birth Defects Res, 2021. 113(3): p. 227-237.

110.

Zhou, Y., et al., Benefits of different combinations of aerobic and resistance

exercise for improving plasma glucose and lipid metabolism and sleep quality

among elderly patients with metabolic syndrome: a randomized controlled trial.

Endocr J, 2022. 69(7): p. 819-830.

111.

Emami, S.R., et al., Impact of eight weeks endurance training on biochemical

parameters and obesity-induced oxidative stress in high fat diet-fed rats. J Exerc

Nutrition Biochem, 2016. 20(1): p. 29-35.

112.

Vogt É, L., et al., Metabolic and Molecular Subacute Effects of a Single

Moderate-Intensity Exercise Bout, Performed in the Fasted State, in Obese Male

Rats. Int J Environ Res Public Health, 2021. 18(14).

113.

Beck, D. and J.A. Foster, Machine learning techniques accurately classify

microbial communities by bacterial vaginosis characteristics. PLoS One, 2014.

9(2): p. e87830.

114.

Yatsunenko, T., et al., Human gut microbiome viewed across age and geography.

Nature, 2012. 486(7402): p. 222-7.

115.

Kaul, A., O. Davidov, and S.D. Peddada, Structural zeros in high-dimensional

data with applications to microbiome studies. Biostatistics, 2017. 18(3): p. 422433.

116.

Yu, D., et al., Profiling of gut microbial dysbiosis in adults with myeloid

leukemia. FEBS Open Bio, 2021. 11(7): p. 2050-2059.

117.

Liu, X., et al., A genome-wide association study for gut metagenome in Chinese

adults illuminates complex diseases. Cell Discov, 2021. 7(1): p. 9.

118.

Zhao, L., et al., A combination of quercetin and resveratrol reduces obesity in

high-fat diet-fed rats by modulation of gut microbiota. Food Funct, 2017. 8(12):

p. 4644-4656.

90

119.

Lu, L., et al., Gut Microbiota and Serum Metabolic Signatures of High-FatInduced Bone Loss in Mice. Front Cell Infect Microbiol, 2021. 11: p. 788576.

120.

Yang, B., et al., Lactobacillus reuteri FYNLJ109L1 Attenuating Metabolic

Syndrome in Mice via Gut Microbiota Modulation and Alleviating

Inflammation. Foods, 2021. 10(9).

121.

Zhang, C., et al., Lactobacillus reuteri J1 prevents obesity by altering the gut

microbiota and regulating bile acid metabolism in obese mice. Food Funct, 2022.

13(12): p. 6688-6701.

122.

Xiao, Y., et al., Colonized Niche, Evolution and Function Signatures of

Bifidobacterium pseudolongum within Bifidobacterial Genus. Foods, 2021.

10(10).

123.

Lieber, A.D., et al., Loss of HDAC6 alters gut microbiota and worsens obesity.

Faseb j, 2019. 33(1): p. 1098-1109.

124.

Yuan, G., M. Tan, and X. Chen, Punicic acid ameliorates obesity and liver

steatosis by regulating gut microbiota composition in mice. Food Funct, 2021.

12(17): p. 7897-7908.

125.

Zhang, X., et al., Dietary cholesterol drives fatty liver-associated liver cancer

by modulating gut microbiota and metabolites. Gut, 2021. 70(4): p. 761-774.

126.

Hu, Y., et al., Pleurotus Ostreatus Ameliorates Obesity by Modulating the Gut

Microbiota in Obese Mice Induced by High-Fat Diet. Nutrients, 2022. 14(9).

127.

Singh, P., et al., High FODMAP diet causes barrier loss via lipopolysaccharidemediated mast cell activation. JCI Insight, 2021. 6(22).

128.

Meelu, P., et al., Impaired innate immune function associated with fecal

supernatant from Crohn's disease patients: insights into potential pathogenic

role of the microbiome. Inflamm Bowel Dis, 2014. 20(7): p. 1139-46.

129.

Azaryan, A.V., T.J. Krieger, and V.Y. Hook, Purification and characteristics of

the candidate prohormone processing proteases PC2 and PC1/3 from bovine

adrenal medulla chromaffin granules. J Biol Chem, 1995. 270(14): p. 8201-8.

130.

Magne, F., et al., The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut

Dysbiosis in Obese Patients? Nutrients, 2020. 12(5).

91

131.

Bo, T.B., et al., Bifidobacterium pseudolongum reduces triglycerides by

modulating gut microbiota in mice fed high-fat food. J Steroid Biochem Mol

Biol, 2020. 198: p. 105602.

132.

Zhang, Q., et al., Influenza infection elicits an expansion of gut population of

endogenous Bifidobacterium animalis which protects mice against infection.

Genome Biol, 2020. 21(1): p. 99.

133.

Zhang, H.Y., et al., Therapeutic mechanisms of traditional Chinese medicine to

improve metabolic diseases via the gut microbiota. Biomed Pharmacother, 2021.

133: p. 110857.

134.

Kaska, L., et al., Improved glucose metabolism following bariatric surgery is

associated with increased circulating bile acid concentrations and remodeling

of the gut microbiome. World J Gastroenterol, 2016. 22(39): p. 8698-8719.

135.

Sun, L., et al., Ablation of gut microbiota alleviates obesity-induced hepatic

steatosis and glucose intolerance by modulating bile acid metabolism in

hamsters. Acta Pharm Sin B, 2019. 9(4): p. 702-710.

136.

Tveter, K.M., et al., Polyphenol-induced improvements in glucose metabolism

are associated with bile acid signaling to intestinal farnesoid X receptor. BMJ

Open Diabetes Res Care, 2020. 8(1).

137.

Spor, A., O. Koren, and R. Ley, Unravelling the effects of the environment and

host genotype on the gut microbiome. Nat Rev Microbiol, 2011. 9(4): p. 27990.

138.

De Angelis, M., et al., The Food-gut Human Axis: The Effects of Diet on Gut

Microbiota and Metabolome. Curr Med Chem, 2019. 26(19): p. 3567-3583.

139.

Wang, H., et al., Phyllanthin inhibits MOLT-4 leukemic cancer cell growth and

induces apoptosis through the inhibition of AKT and JNK signaling pathway. J

Biochem Mol Toxicol, 2021. 35(6): p. 1-10.

140.

Zheng, B., et al., Rhoifolin from Plumula Nelumbinis exhibits anti-cancer

effects in pancreatic cancer via AKT/JNK signaling pathways. Sci Rep, 2022.

12(1): p. 5654.

141.

Zhao, L., et al., MicroRNA-4268 inhibits cell proliferation via AKT/JNK

92

signalling pathways by targeting Rab6B in human gastric cancer. Cancer Gene

Ther, 2020. 27(6): p. 461-472.

142.

Wang, L., et al., Renalase prevents AKI independent of amine oxidase activity.

J Am Soc Nephrol, 2014. 25(6): p. 1226-35.

143.

Wu, Y., et al., Renalase improves pressure overload-induced heart failure in rats

by regulating extracellular signal-regulated protein kinase 1/2 signaling.

Hypertens Res, 2021. 44(5): p. 481-488.

144.

Zhang, T., et al., Renalase Attenuates Mouse Fatty Liver Ischemia/Reperfusion

Injury through Mitigating Oxidative Stress and Mitochondrial Damage via

Activating SIRT1. Oxid Med Cell Longev, 2019. 2019: p. 7534285.

145.

Razolli, D.S., et al., Proopiomelanocortin Processing in the Hypothalamus Is

Directly Regulated by Saturated Fat: Implications for the Development of

Obesity. Neuroendocrinology, 2020. 110(1-2): p. 92-104.

146.

Tolhurst, G., et al., Short-chain fatty acids stimulate glucagon-like peptide-1

secretion via the G-protein-coupled receptor FFAR2. Diabetes, 2012. 61(2): p.

364-71.

147.

Scott, K.P., et al., The influence of diet on the gut microbiota. Pharmacol Res,

2013. 69(1): p. 52-60.

148.

Charrier, J.A., et al., High fat diet partially attenuates fermentation responses in

rats fed resistant starch from high-amylose maize. Obesity (Silver Spring), 2013.

21(11): p. 2350-5.

149.

Hoshino, A., et al., Modulation of PC1/3 activity by self-interaction and

substrate binding. Endocrinology, 2011. 152(4): p. 1402-11.

150.

Barnard, R.J., et al., Effects of a high-fat, sucrose diet on serum insulin and

related atherosclerotic risk factors in rats. Atherosclerosis, 1993. 100(2): p. 22936.

151.

Barnard, R.J., et al., Diet-induced insulin resistance precedes other aspects of

the metabolic syndrome. J Appl Physiol (1985), 1998. 84(4): p. 1311-5.

152. Bilu, C., et al., Beneficial effects of voluntary wheel running on activity rhythms,

metabolic state, and affect in a diurnal model of circadian disruption. Sci Rep,

93

2022. 12(1): p. 2434.

153.

Tanaka, Y., et al., Effect of a single bout of morning or afternoon exercise on

glucose fluctuation in young healthy men. Physiol Rep, 2021. 9(7): p. e14784.

154.

Wang, H., et al., Effects of Different Intensity Exercise on Glucose Metabolism

and Hepatic IRS/PI3K/AKT Pathway in SD Rats Exposed with TCDD. Int J

Environ Res Public Health, 2021. 18(24).

155.

Lee, S., et al., Effects of long-term exercise on plasma adipokine levels and

inflammation-related gene expression in subcutaneous adipose tissue in

sedentary dysglycaemic, overweight men and sedentary normoglycaemic men

of healthy weight. Diabetologia, 2019. 62(6): p. 1048-1064.

156.

Younossi, Z.M., K.E. Corey, and J.K. Lim, AGA Clinical Practice Update on

Lifestyle Modification Using Diet and Exercise to Achieve Weight Loss in the

Management of Nonalcoholic Fatty Liver Disease: Expert Review.

Gastroenterology, 2021. 160(3): p. 912-918.

157.

Ahmed, S. and J.D. Spence, Sex differences in the intestinal microbiome:

interactions with risk factors for atherosclerosis and cardiovascular disease. Biol

Sex Differ, 2021. 12(1): p. 35.

94

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る