リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Revealing the Origins of Violent Stellar Transients from Fast Radio Bursts and Magnetars」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Revealing the Origins of Violent Stellar Transients from Fast Radio Bursts and Magnetars

山崎, 翔太郎 東京大学 DOI:10.15083/0002004721

2022.06.22

概要

The transient sky is a goldmine of enigmatic violent astrophysical phenomena. Fast radio bursts (FRBs) are one of such mysterious transients with millisecond-duration bright radio flashes originating from beyond our galaxy. Most of FRBs have not been observed to repeat and such non-repeating FRBs may be explained by pulsar-like emissions expected from the merger of double neutron stars. In the Chapter 2, by using numerical-relativity simulations of a BNS merger, we examine this scenario with particular focus on the spatial distribution of the matter ejected during the coalescence, which may prohibit the FRB signal to propagate. We show that the formation of ejecta occurs about 1 ms after the rotation speed of the merged neutron star becomes sufficiently high enough to produce an FRB. Furthermore, we propose a new scenario that a super young (1-10 yr) neutron star left after the binary neutron star merger could an the origin of repeating FRBs. In Chapter 3, we highlight one of the key observable quantities of FRBs, the dispersion measure (DM), which is defined as an electron column density from the source to the observer. Thanks to their extragalactic origin, FRBs offer a unique approach to probe the unknown matter distribution inside and outside galaxies. We provide a new model for the hot gas distribution inside our Galaxy, thereby estimating its contribution to the DM of FRBs. Since our model predicts relatively large DM values over the whole sky, this strong DM signal would be imprinted onto the DM of FRBs, which could be tested by using an increasing sample of nearby FRBs with a small DM.

 The second half of this thesis is dedicated to Magnetars, a class of highly magnetized isolated neutron stars, which may be related to FRBs. Magnetars are characterized by their violent flaring/bursting activities in X- to soft gamma-rays with luminosity ranging over ten orders of magnitude. Huge amounts of magnetic energy are released as a hot electron-positron pair plasma (fireball), observed as a flare. We begin Chapter 4 by stressing the possible relationship between magnetar flares and radio transients. We particularly investigate how magnetar flares influence on the coherent radio pulsations and find that radio pulsations would be absorbed by the expanding plasma flow launched by magnetar flares. Since the plasma frequency would decrease with time, the timescale for the radio suppression would be shorter for higher frequencies. Namely, an unambiguous test of our model would be provided by future simultaneous observations of radio-emitting neutron stars at X-ray and at multiple radio frequencies during a period of magnetar flares. Finally, in Chapter 5, we present our recent progress on the spectral formation of magnetar flares in terms of the resonant inverse Compton scattering, which is the most efficient process in the magnetospheres. We develop a toy model taking into account the self-consistent particle velocity distribution under the strong radiation pressure from the flare and perform a 3D Monte Carlo simulation. Our results demonstrate that the original thermal spectrum arising from the optically-thick fireball plasma should be mildly Comptonized, which is in good agreement with the observed burst spectra of magnetar flares observed in 2006 March from SGR 1900+14.

この論文で使われている画像

参考文献

Abadie, J., Abbott, B. P., Abbott, R., et al. 2010, Classical and Quantum Gravity, 27, 173001

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, ApJ, 832, L21 —. 2017, Phys. Rev. Lett., 119, 161101

Anderson, M. E., & Bregman, J. N. 2010, ApJ, 714, 320

Arcavi, I., Wolf, W. M., Howell, D. A., et al. 2016, ApJ, 819, 35

Archibald, R. F., Kaspi, V. M., Tendulkar, S. P., & Scholz, P. 2016, ApJ, 829, L21 Archibald, R. F., Burgay, M., Lyutikov, M., et al. 2017, ApJ, 849, L20

Bannister, K. W., Deller, A. T., Phillips, C., et al. 2019, Science, 365, 565 Baring, M. G., & Harding, A. K. 2007, Ap&SS, 308, 109

Barthelmy, S. D., Barbier, L. M., Cummings, J. R., et al. 2005, Space Sci. Rev., 120, 143

Bassa, C. G., Beswick, R., Tingay, S. J., et al. 2016, MNRAS, 463, L36 Bassa, C. G., Tendulkar, S. P., Adams, E. A. K., et al. 2017, ApJ, 843, L8 Belczynski, K., Perna, R., Bulik, T., et al. 2006, ApJ, 648, 1110 Beloborodov, A. M. 2009, Astrophys. J., 703, 1044

Beloborodov, A. M. 2013, ApJ, 777, 114 —. 2017, ApJ, 843, L26

Beloborodov, A. M., & Thompson, C. 2007, ApJ, 657, 967

Bhandari, S., Keane, E. F., Barr, E. D., et al. 2018, MNRAS, 475, 1427 Bildsten, L., & Cutler, C. 1992, ApJ, 400, 175

Bregman, J. N. 2007, ARA&A, 45, 221

Bregman, J. N., & Lloyd-Davies, E. J. 2007, ApJ, 669, 990

Bullock, J. S., Kolatt, T. S., Sigad, Y., et al. 2001, MNRAS, 321, 559

Burgay, M., Possenti, A., Kerr, M., et al. 2016, The Astronomer’s Telegram, 9366 Caleb, M., Keane, E. F., van Straten, W., et al. 2018, MNRAS, 478, 2046 Cameron, P. B., Chandra, P., Ray, A., et al. 2005, Nature, 434, 1112

Camilo, F., Kaspi, V. M., Lyne, A. G., et al. 2000, ApJ, 541, 367 Camilo, F., Ransom, S., Halpern, J., et al. 2006, Nature, 442, 892

Camilo, F., Ransom, S. M., Halpern, J. P., & Reynolds, J. 2007a, ApJ, 666, L93 Camilo, F., Cognard, I., Ransom, S. M., et al. 2007b, ApJ, 663, 497

Camilo, F., Ransom, S. M., Halpern, J. P., et al. 2016, Astrophys. J., 820, 110 Canuto, V., Lodenquai, J., & Ruderman, M. 1971, Phys. Rev. D, 3, 2303 Canuto, V., & Ventura, J. 1977, Fund. Cosmic Phys., 2, 203

Cen, R., & Ostriker, J. P. 1999, ApJ, 514, 1 —. 2006, ApJ, 650, 560

Champion, D. J., Petro↵, E., Kramer, M., et al. 2016, MNRAS, 460, L30 Chatterjee, S., Law, C. J., Wharton, R. S., et al. 2017, Nature, 541, 58

Cheng, B., Epstein, R. I., Guyer, R. A., & Young, A. C. 1996, Nature, 382, 518

CHIME/FRB Collaboration, Amiri, M., Bandura, K., et al. 2018, ApJ, 863, 48

CHIME/FRB Collaboration, Andersen, B. C., Bandura, K., et al. 2019, ApJ, 885, L24

Collins, J. A., Shull, J. M., & Giroux, M. L. 2004, ApJ, 605, 216 Connor, L., Sievers, J., & Pen, U.-L. 2016, MNRAS, 458, L19

Cordes, J. M., & Chatterjee, S. 2019, ARA&A, 57, 417

Cordes, J. M., & Lazio, T. J. W. 2002, arXiv:astro-ph/0207156 —. 2003, arXiv:astro-ph/0301598

Cordes, J. M., & Wasserman, I. 2016, MNRAS, 457, 232

Cordes, J. M., Wasserman, I., Hessels, J. W. T., et al. 2017, Astrophys. J., 842, 35 Dai, Z. G., Wang, J. S., Wu, X. F., & Huang, Y. F. 2016, ApJ, 829, 27

Dai, Z. G., Wang, J. S., & Yu, Y. W. 2017, ApJ, 838, L7 Deng, W., & Zhang, B. 2014, ApJ, 783, L35

Dolag, K., Gaensler, B. M., Beck, A. M., & Beck, M. C. 2015, MNRAS, 451, 4277

Drout, M. R., Chornock, R., Soderberg, A. M., et al. 2014, ApJ, 794, 23 Duncan, R. C., & Thompson, C. 1992, ApJ, 392, L9

Enoto, T., Kisaka, S., & Shibata, S. 2019, Rept. Prog. Phys., 82, 106901

Enoto, T., Nakagawa, Y. E., Sakamoto, T., & Makishima, K. 2012, MNRAS, 427, 2824

Faerman, Y., Sternberg, A., & McKee, C. F. 2017, ApJ, 835, 52 Falcke, H., & Rezzolla, L. 2014, A&A, 562, A137

Fang, T., Bullock, J., & Boylan-Kolchin, M. 2013, ApJ, 762, 20 Fang, T., Buote, D., Bullock, J., & Ma, R. 2015, ApJS, 217, 21

Fang, T., Marshall, H. L., Lee, J. C., Davis, D. S., & Canizares, C. R. 2002, ApJ, 572, L127

Fang, T., Sembach, K. R., & Canizares, C. R. 2003, ApJ, 586, L49 Fern´andez, R., & Thompson, C. 2007, ApJ, 660, 615

Feroci, M., Hurley, K., Duncan, R. C., & Thompson, C. 2001, ApJ, 549, 1021

Fielding, D., Quataert, E., McCourt, M., & Thompson, T. A. 2017, Mon. Not. Roy. Astron. Soc., 466, 3810

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306

Fox, A. J., Wakker, B. P., Savage, B. D., et al. 2005, ApJ, 630, 332 Frail, D. A., Kulkarni, S. R., & Bloom, J. S. 1999, Nature, 398, 127 Fukugita, M., Hogan, C. J., & Peebles, P. J. E. 1998, ApJ, 503, 518 Fukugita, M., & Peebles, P. J. E. 2004, ApJ, 616, 643

Gaensler, B. M., Madsen, G. J., Chatterjee, S., & Mao, S. A. 2008, PASA, 25, 184 Gaensler, B. M., et al. 2005, Nature, 434, 1104

Gao, H., Zhang, B., Wu, X.-F., & Dai, Z.-G. 2013, Phys. Rev. D, 88, 043010

Gavriil, F. P., Gonzalez, M. E., Gotthelf, E. V., et al. 2008, Science, 319, 1802 Gelfand, J. D., Lyubarsky, Y. E., Eichler, D., et al. 2005, ApJ, 634, L89 Geng, J. J., & Huang, Y. F. 2015, ApJ, 809, 24

Ghisellini, G., & Svensson, R. 1991, MNRAS, 252, 313

Gibson, B. K., Giroux, M. L., Penton, S. V., et al. 2000, AJ, 120, 1830 Gill, R., & Heyl, J. S. 2010, MNRAS, 407, 1926

Glendenning, N. K., & Moszkowski, S. A. 1991, Physical Review Letters, 67, 2414

Gonthier, P. L., Harding, A. K., Baring, M. G., Costello, R. M., & Mercer, C. L. 2000, ApJ, 540, 907

Goodman, J. 1986, ApJ, 308, L47

Go¨tz, D., Mereghetti, S., Tiengo, A., & Esposito, P. 2006, A&A, 449, L31 Go¨˘gu¨¸s, E., Lin, L., Kaneko, Y., et al. 2016, ApJ, 829, L25

Go¨ˇgu¨¸s , E., Woods, P. M., Kouveliotou, C., et al. 1999, ApJ, 526, L93 Go¨ˇgu¨¸s, E., Woods, P. M., Kouveliotou, C., et al. 2000, ApJ, 532, L121 G¨oˇgu¨s, , E., Kouveliotou, C., Woods, P. M., et al. 2001, ApJ, 558, 228 G¨oˇgu¨s, , E., Woods, P. M., Kouveliotou, C., et al. 2011, ApJ, 740, 55

Granot, J., Ramirez-Ruiz, E., Taylor, G. B., et al. 2006, ApJ, 638, 391 Grimsrud, O. M., & Wasserman, I. 1998, MNRAS, 300, 1158

Gupta, A., Mathur, S., Krongold, Y., Nicastro, F., & Galeazzi, M. 2012, ApJ, 756, L8

Hagihara, T., Yao, Y., Yamasaki, N. Y., et al. 2010, PASJ, 62, 723 Hansen, B. M. S., & Lyutikov, M. 2001, MNRAS, 322, 695

Harding, A. K., & Lai, D. 2006, Reports on Progress in Physics, 69, 2631 Henley, D. B., & Shelton, R. L. 2013, ApJ, 773, 92

Hessels, J. W. T., Spitler, L. G., Seymour, A. D., et al. 2019, ApJ, 876, L23

Horesh, A., Hotokezaka, K., Piran, T., Nakar, E., & Hancock, P. 2016, ApJ, 819, L22

Hotokezaka, K., Kyutoku, K., Tanaka, M., et al. 2013, ApJ, 778, L16 Huang, L., & Yu, C. 2014a, ApJ, 784, 168 —. 2014b, ApJ, 796, 3

Hurley, K., Cline, T., Mazets, E., et al. 1999, Nature, 397, 41

Hurley, K., Boggs, S. E., Smith, D. M., et al. 2005, Nature, 434, 1098 Inoue, S. 2004, MNRAS, 348, 999

Ioka, K. 2003, ApJ, 598, L79

Israel, G. L., Romano, P., Mangano, V., et al. 2008, ApJ, 685, 1114 Iwamoto, S., & Takahara, F. 2002, ApJ, 565, 163

Johnston, S., Taylor, R., Bailes, M., et al. 2008, Experimental Astronomy, 22, 151 Kashiyama, K., Ioka, K., & M´esz´aros, P. 2013, ApJ, 776, L39

Kashiyama, K., & Murase, K. 2017, ApJ, 839, L3

Kaspi, V. M., & Beloborodov, A. M. 2017, ARA&A, 55, 261 Kaspi, V. M., & McLaughlin, M. A. 2005, ApJ, 618, L41

Kaspi, V. M., Archibald, R. F., Bhalerao, V., et al. 2014, ApJ, 786, 84 Katz, J. I. 2014, Phys. Rev. D, 89, 103009 —. 2016, Modern Physics Letters A, 31, 1630013

Keane, E., Bhattacharyya, B., Kramer, M., et al. 2015, Advancing Astrophysics with the Square Kilometre Array (AASKA14), 40

Keane, E. F. 2018, Nature Astronomy, 2, 865

Keane, E. F., & Petro↵, E. 2015, MNRAS, 447, 2852

Keane, E. F., Johnston, S., Bhandari, S., et al. 2016, Nature, 530, 453

Kennea, J. A., Lien, A. Y., Marshall, F. E., et al. 2016, GRB Coordinates Network, Circular Service, No. 19735, #1 (2016), 19735

Kennel, C. F., & Coroniti, F. V. 1984, ApJ, 283, 710 Kerr, F. J., & Lynden-Bell, D. 1986, MNRAS, 221, 1023

Kisaka, S., Asano, K., & Terasawa, T. 2016, ApJ, 829, 12

Kiuchi, K., Kyutoku, K., Sekiguchi, Y., Shibata, M., & Wada, T. 2014, Phys. Rev. D, 90, 041502

Klypin, A., Zhao, H., & Somerville, R. S. 2002, ApJ, 573, 597 Kokubo, M., Mitsuda, K., Sugai, H., et al. 2017, ApJ, 844, 95

Kouveliotou, C., Dieters, S., Strohmayer, T., et al. 1998, Nature, 393, 235 Kouveliotou, C., Strohmayer, T., Hurley, K., et al. 1999, Astrophys. J., 510, L115 Kozlova, A. V., Israel, G. L., Svinkin, D. S., et al. 2016, MNRAS, 460, 2008 Krimm, H. A., Holland, S. T., Corbet, R. H. D., et al. 2013, ApJS, 209, 14 Kulkarni, S. R. 2018, Nature Astronomy, 2, 832

Kulkarni, S. R., Ofek, E. O., & Neill, J. D. 2015, ArXiv e-prints, arXiv:1511.09137

Kulkarni, S. R., Ofek, E. O., Neill, J. D., Zheng, Z., & Juric, M. 2014, ApJ, 797, 70

Kumar, H. S., Ibrahim, A. I., & Safi-Harb, S. 2010, ApJ, 716, 97

Kumar, P., Lu, W., & Bhattacharya, M. 2017, MNRAS, 468, 2726 Kumar, P., Shannon, R. M., Os-lowski, S., et al. 2019, ApJ, 887, L30

Lai, D. 2012, ApJ, 757, L3

Lattimer, J. M., & Prakash, M. 2007, Phys. Rep., 442, 109 Levin, L., Bailes, M., Bates, S., et al. 2010, ApJ, 721, L33 Li, C., & Sari, R. 2008, ApJ, 677, 425

Li, Y., & Bregman, J. 2017, ApJ, 849, 105

Li, Z., Gao, H., Wei, J.-J., et al. 2019, ApJ, 876, 146

Liu, T., Romero, G. E., Liu, M.-L., & Li, A. 2016, ApJ, 826, 82

Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F. 2007, Science, 318, 777

Lyubarsky, Y. 2009, ApJ, 696, 320 —. 2014, MNRAS, 442, L9

Lyubarsky, Y. E. 2002, MNRAS, 332, 199

Lyutikov, M. 2003, MNRAS, 346, 540 —. 2006, MNRAS, 367, 1594

Lyutikov, M., & Gavriil, F. P. 2006, MNRAS, 368, 690 Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415

Mahony, E. K., Ekers, R. D., Macquart, J.-P., et al. 2018, ApJ, 867, L10 Main, R., Yang, I.-S., Chan, V., et al. 2018, Nature, 557, 522

Majid, W. A., Pearlman, A. B., Dobreva, T., et al. 2017, ApJ, 834, L2 Maller, A. H., & Bullock, J. S. 2004, MNRAS, 355, 694

Manchester, R. N., Fan, G., Lyne, A. G., Kaspi, V. M., & Crawford, F. 2006, ApJ, 649, 235

Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993

Marcote, B., Paragi, Z., Hessels, J. W. T., et al. 2017, ApJ, 834, L8 Margalit, B., Berger, E., & Metzger, B. D. 2019, ApJ, 886, 110

Masada, Y., Nagataki, S., Shibata, K., & Terasawa, T. 2010, PASJ, 62, 1093 Masui, K., Lin, H.-H., Sievers, J., et al. 2015, Nature, 528, 523

Mathews, W. G., & Prochaska, J. X. 2017, ApJ, 846, L24

Mazets, E. P., Cline, T. L., Aptekar’, R. L., et al. 1999, Astronomy Letters, 25, 628

Mazets, E. P., Golentskii, S. V., Ilinskii, V. N., Aptekar, R. L., & Guryan, I. A. 1979, Nature, 282, 587

McCammon, D., Almy, R., Apodaca, E., et al. 2002, ApJ, 576, 188

McConnell, D., McCulloch, P. M., Hamilton, P. A., et al. 1991, MNRAS, 249, 654 McKernan, B., Yaqoob, T., & Reynolds, C. S. 2004, Astrophys. J., 617, 232 McQuinn, M. 2014, ApJ, 780, L33

Meegan, C., Lichti, G., Bhat, P. N., et al. 2009, ApJ, 702, 791 Mereghetti, S., Go¨tz, D., Weidenspointner, G., et al. 2009, ApJ, 696, L74 Meszaros, P. 1992, High-energy radiation from magnetized neutron stars Metzger, B. D., Berger, E., & Margalit, B. 2017, ApJ, 841, 14

Metzger, B. D., Margalit, B., & Sironi, L. 2019, MNRAS, 485, 4091 Metzger, B. D., & Piro, A. L. 2014, MNRAS, 439, 3916

Michilli, D., Seymour, A., Hessels, J. W. T., et al. 2018, Nature, 553, 182 Mihalas, D., & Mihalas, B. W. 1984, Foundations of radiation hydrodynamics Miller, M. J., & Bregman, J. N. 2013, ApJ, 770, 118 —. 2015, ApJ, 800, 14

Mingarelli, C. M. F., Levin, J., & Lazio, T. J. W. 2015, ApJ, 814, L20 Murase, K., Kashiyama, K., Kiuchi, K., & Bartos, I. 2015, ApJ, 805, 82

Murase, K., Kashiyama, K., & M´esza´ros, P. 2016, MNRAS, 461, 1498 Nakagawa, Y., Ebisawa, K., & Enoto, T. 2018, PASJ, 70, 32

Nakagawa, Y. E., Yoshida, A., Yamaoka, K., & Shibazaki, N. 2009, PASJ, 61, 109 Nakagawa, Y. E., Yoshida, A., Hurley, K., et al. 2007, PASJ, 59, 653

Nakar, E., Piran, T., & Sari, R. 2005, ApJ, 635, 516

Nakashima, S., Inoue, Y., Yamasaki, N., et al. 2018, ApJ, 862, 34 Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493 Nicastro, F., Zezas, A., Drake, J., et al. 2002, ApJ, 573, 157

Nicholl, M., Williams, P. K. G., Berger, E., et al. 2017, ApJ, 843, 84 Nobili, L., Turolla, R., & Zane, S. 2008, MNRAS, 386, 1527

Nuza, S. E., Parisi, F., Scannapieco, C., et al. 2014, MNRAS, 441, 2593 Ofek, E. O. 2017, ApJ, 846, 44

Olausen, S. A., & Kaspi, V. M. 2014, ApJS, 212, 6

Olive, J. F., Hurley, K., Sakamoto, T., et al. 2004, ApJ, 616, 1148 Omand, C. M. B., Kashiyama, K., & Murase, K. 2018, MNRAS, 474, 573 Paczynski, B. 1986, ApJ, 308, L43 —. 1992, , 42, 145

Palmer, D. M., Barthelmy, S., Gehrels, N., et al. 2005, Nature, 434, 1107 Parfrey, K., Beloborodov, A. M., & Hui, L. 2013, ApJ, 774, 92

Pen, U.-L., & Connor, L. 2015, ApJ, 807, 179

Perley, D. A., Perley, R. A., Dhawan, V., & Carilli, C. L. 2017, ApJ, 841, 117 Petro↵, E., van Straten, W., Johnston, S., et al. 2014, ApJ, 789, L26

Petro↵, E., Johnston, S., Keane, E. F., et al. 2015, MNRAS, 454, 457

Petro↵, E., Barr, E. D., Jameson, A., et al. 2016, PASA, 33, e045

Petro↵, E., Burke-Spolaor, S., Keane, E. F., et al. 2017, MNRAS, 469, 4465

Petro↵, E., Oostrum, L. C., Stappers, B. W., et al. 2019, MNRAS, 482, 3109 Pietrzyn´ski, G., et al. 2013, Nature, 495, 76

Piro, A. L. 2012, ApJ, 755, 80 —. 2016, ApJ, 824, L32

Piro, A. L., Giacomazzo, B., & Perna, R. 2017, ApJ, 844, L19

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A13 Platts, E., Weltman, A., Walters, A., et al. 2018, arXiv e-prints, arXiv:1810.05836

Pol, N., Lam, M. T., McLaughlin, M. A., Lazio, T. J. W., & Cordes, J. M. 2019, ApJ, 886, 135

Popov, S. B., & Postnov, K. A. 2010a, in Evolution of Cosmic Objects through their Physical Activity, ed. H. A. Harutyunian, A. M. Mickaelian, & Y. Terzian, 129–132

Popov, S. B., & Postnov, K. A. 2010b, in Evolution of Cosmic Objects through their Physical Activity, ed. H. A. Harutyunian, A. M. Mickaelian, & Y. Terzian, 129–132

Popov, S. B., Postnov, K. A., & Pshirkov, M. S. 2018, Phys. Usp., 61, 965 Price, D. C., Foster, G., Geyer, M., et al. 2019, MNRAS, 486, 3636 Prochaska, J. X., & Neeleman, M. 2018, MNRAS, 474, 318

Prochaska, J. X., & Zheng, Y. 2019, MNRAS, 485, 648

Prochaska, J. X., Macquart, J.-P., McQuinn, M., et al. 2019, Science, 365, aay0073 Quimby, R. M., Yuan, F., Akerlof, C., & Wheeler, J. C. 2013, MNRAS, 431, 912

Rasmussen, A., Kahn, S. M., & Paerels, F. 2003, in Astrophysics and Space Science Library, Vol. 281, The IGM/Galaxy Connection. The Distribution of Baryons at z=0, ed. J. L. Rosenberg & M. E. Putman, 109

Ravi, V., Shannon, R. M., Bailes, M., et al. 2016, Science, 354, 1249 Ravi, V., Catha, M., D’Addario, L., et al. 2019, Nature, 572, 352

Rea, N., & Esposito, P. 2011, Astrophysics and Space Science Proceedings, 21, 247

Rea, N., Zane, S., Turolla, R., Lyutikov, M., & Go¨tz, D. 2008, ApJ, 686, 1245 Rea, N., Esposito, P., Turolla, R., et al. 2010, Science, 330, 944

Rea, N., Israel, G. L., Esposito, P., et al. 2012, ApJ, 754, 27 Readhead, A. C. S. 1994, ApJ, 426, 51

Readhead, A. C. S., & Du↵ett-Smith, P. J. 1975, A&A, 42, 151

Reynolds, R. J. 1989, ApJ, 339, L29 Rickett, B. J. 1990, ARA&A, 28, 561

Roca-F`abrega, S., Valenzuela, O., Col´ın, P., et al. 2016, ApJ, 824, 94 Rybicki, G. B., & Lightman, A. P. 1979, Radiative processes in astrophysics Savage, B. D., & Wakker, B. P. 2009, ApJ, 702, 1472

Savchenko, V., Neronov, A., Beckmann, V., Produit, N., & Walter, R. 2010, A&A, 510, A77

Scholz, P., Spitler, L. G., Hessels, J. W. T., et al. 2016, ApJ, 833, 177

Sekiguchi, Y., Kiuchi, K., Kyutoku, K., & Shibata, M. 2015, Phys. Rev. D, 91, 064059

Sembach, K. R., Wakker, B. P., Savage, B. D., et al. 2003, ApJS, 146, 165 Shannon, R. M., Macquart, J.-P., Bannister, K. W., et al. 2018, Nature, 562, 386 Shcherbakov, R. V. 2008, ApJ, 688, 695

Shibata, M., Kiuchi, K., & Sekiguchi, Y.-i. 2017, Phys. Rev. D, 95, 083005 Shull, J. M., & Danforth, C. W. 2018, ApJ, 852, L11

Shull, J. M., Smith, B. D., & Danforth, C. W. 2012, ApJ, 759, 23 Snowden, S. L., Egger, R., Freyberg, M. J., et al. 1997, ApJ, 485, 125 Sommer-Larsen, J. 2006, ApJ, 644, L1

Spitler, L. G., Cordes, J. M., Hessels, J. W. T., et al. 2014, ApJ, 790, 101 Spitler, L. G., Scholz, P., Hessels, J. W. T., et al. 2016, Nature, 531, 202

Spitzer, Jr., L. 1956, ApJ, 124, 20

Svensson, R. 1982, ApJ, 258, 335

Szary, A., Melikidze, G. I., & Gil, J. 2015, ApJ, 800, 76 Tanaka, S. J., & Takahara, F. 2010, ApJ, 715, 1248 —. 2013, MNRAS, 429, 2945

Taylor, J. H., & Cordes, J. M. 1993, ApJ, 411, 674

Tendulkar, S. P., Bassa, C. G., Cordes, J. M., et al. 2017, ApJ, 834, L7

Tepper-Garc´ıa, T., Bland-Hawthorn, J., & Sutherland, R. S. 2015, ApJ, 813, 94 Thompson, C., & Blaes, O. 1998, Phys. Rev. D, 57, 3219

Thompson, C., & Duncan, R. C. 1995, MNRAS, 275, 255 —. 1996, ApJ, 473, 322 —. 2001, ApJ, 561, 980

Thompson, C., Lyutikov, M., & Kulkarni, S. R. 2002, ApJ, 574, 332 Thornton, D., Stappers, B., Bailes, M., et al. 2013, Science, 341, 53 Timokhin, A. N. 2010a, MNRAS, 408, L41 —. 2010b, MNRAS, 408, 2092

Timokhin, A. N., & Arons, J. 2013, MNRAS, 429, 20 Totani, T. 2013, PASJ, 65, L12

Totani, T., Morokuma, T., Oda, T., Doi, M., & Yasuda, N. 2008, PASJ, 60, 1327 Tumlinson, J., Thom, C., Werk, J. K., et al. 2011, Science, 334, 948

Ulmer, A. 1994, ApJ, 437, L111

Usov, V. V. 1992, Nature, 357, 472

van Leeuwen, J. 2014, in The Third Hot-wiring the Transient Universe Workshop, ed. P. R. Wozniak, M. J. Graham, A. A. Mahabal, & R. Seaman, 79–79

van Putten, T., Watts, A. L., Baring, M. G., & Wijers, R. A. M. J. 2016, MNRAS, 461, 877

Wadiasingh, Z., Baring, M. G., Gonthier, P. L., & Harding, A. K. 2018, ApJ, 854, 98

Wang, J.-S., Yang, Y.-P., Wu, X.-F., Dai, Z.-G., & Wang, F.-Y. 2016, ApJ, 822, L7

Wang, N., Manchester, R. N., & Johnston, S. 2007, MNRAS, 377, 1383 Wang, Q. D., Yao, Y., Tripp, T. M., et al. 2005, Astrophys. J., 635, 386

Watts, A. L., Kouveliotou, C., van der Horst, A. e. J., et al. 2010, ApJ, 719, 190 Williams, P. K. G., & Berger, E. 2016, ApJ, 821, L22

Woods, P. M., & Thompson, C. 2006, Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates, Vol. 39, 547–586

Yamamoto, T., Shibata, M., & Taniguchi, K. 2008, Phys. Rev. D, 78, 064054 Yamasaki, S., Kisaka, S., Terasawa, T., & Enoto, T. 2019, MNRAS, 483, 4175 Yamasaki, S., & Totani, T. 2020, ApJ, 888, 105

Yamasaki, S., Totani, T., & Kawanaka, N. 2016, MNRAS, 460, 2875 Yamasaki, S., Totani, T., & Kiuchi, K. 2018, PASJ, 70, 39

Yang, Y.-P., Zhang, B., & Dai, Z.-G. 2016, ApJ, 819, L12

Yao, G.-R., Huang, L., Yu, C., & Shen, Z.-Q. 2018, ApJ, 854, 10

Yao, J. M., Manchester, R. N., & Wang, N. 2017, ApJ, 835, 29 Yao, Y., & Wang, Q. D. 2007, ApJ, 658, 1088

Yao, Y., Wang, Q. D., Hagihara, T., et al. 2009, ApJ, 690, 143 Yoshino, T., Mitsuda, K., Yamasaki, N. Y., et al. 2009, PASJ, 61, 805

Younes, G., Kouveliotou, C., & Roberts, O. 2016, GRB Coordinates Network, Circular Service, No. 19736, #1 (2016), 19736

Younes, G., Kouveliotou, C., van der Horst, A. J., et al. 2014, ApJ, 785, 52 Yu, C. 2012, ApJ, 757, 67

Yu, C., & Huang, L. 2013, ApJ, 771, L46

Zane, S., Turolla, R., Nobili, L., & Rea, N. a. 2011, Advances in Space Research, 47, 1298

Zhang, B. 2017, ApJ, 836, L32 —. 2018, The Physics of Gamma-Ray Bursts, doi:10.1017/9781139226530

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る