リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Integration of Hot Tube Gas Forming and Die Quenching of Ultra-High Strength Steel Hollow Parts Using Low Pressure Sealed-Air」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Integration of Hot Tube Gas Forming and Die Quenching of Ultra-High Strength Steel Hollow Parts Using Low Pressure Sealed-Air

Ali Talebi-Anaraki Tomoyoshi Maeno 80505397 Yuta Matsubara Ryohei Ikeda Ken-ichiro Mori 80127167 横浜国立大学

2022.02.10

概要

A low pressure sealed-air hot tube gas forming process of ultra-high strength steel tubes was developed not only to change the cross-section of the hollow products by bulging but also to increase the strength of components. Gas-formed components are typically formed by a controlled-gas pressure with extremely high internal pressure, which leads to affected production costs and safety. Moreover, compressing the gas with high pressure requires high energy during its preparation. Therefore, to simplify the internal pressure controlling system and improve the safety factor in gas forming processes, the sealed-air tubes are formed with a quite low initial pressure. The pressure of the sealed air increased with increasing temperature of the air inside the resistance-heated tube, and the bulging deformation was controlled only by axial feeding. The effects of the initial pressure and heating temperature on the bulging deformation and quenchability of the tubes, and the effect of the starting time of axial feeding on the bulging behavior were examined. Consequently, ultra-high strength steel bulged parts were produced even in low initial internal pressure and with the rapid heating of the tubes.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Koç, M.; Altan, T. An overall review of the tube hydroforming (THF) technology. J. Mater. Process. Technol. 2001, 108, 384–393.

[CrossRef]

Yuan, S.J.; Wang, X.S.; Liu, G.; Wang, Z.R. Control and use of wrinkles in tube hydroforming. J. Mater. Process. Technol. 2007, 182,

6–11. [CrossRef]

Nikhare, C.; Weiss, M.; Hodgson, P.D. FEA comparison of high and low pressure tube hydroforming of TRIP steel. Comput. Mater.

Sci. 2009, 47, 146–152. [CrossRef]

Nikhare, C.; Weiss, M.; Hodgson, P.D. Experimental and numerical investigation of low pressure tube hydroforming on stainless

steel. In Proceedings of the 12th International Conference on Metal Forming, Kraków, Poland, 21–24 September 2008; pp. 272–279.

Chu, G.N.; Lin, C.Y.; Li, W.; Lin, Y.L. Effect of internal pressure on springback during low pressure tube hydroforming. Int. J.

Mater. Form. 2018, 11, 855–866. [CrossRef]

Liu, G.; Tang, Z.; He, Z.; Yuan, S. Warm hydroforming of magnesium alloy tube with large expansion ratio. Trans. Nonferrous Met.

Soc. China 2010, 20, 2071–2075. [CrossRef]

Kim, B.J.; Van Tyne, C.J.; Lee, M.Y.; Moon, Y.H. Finite element analysis and experimental confirmation of warm hydroforming

process for aluminum alloy. J. Mater. Process. Technol. 2007, 187, 296–299. [CrossRef]

Yi, H.K.; Pavlina, E.J.; Van Tyne, C.J.; Moon, Y.H. Application of a combined heating system for the warm hydroforming of

lightweight alloy tubes. J. Mater. Process. Technol. 2008, 203, 532–536. [CrossRef]

He, Z.B.; Fan, X.B.; Shao, F.; Zheng, K.L.; Wang, Z.B.; Yuan, S.J. Formability and Microstructure of AA6061 Al Alloy Tube for Hot

Metal Gas Forming at Elevated Temperature. Trans. Nonferrous Met. Soc. China 2012, 22, s364–s369. [CrossRef]

Maeno, T.; Mori, K.-I.; Fujimoto, K. Hot gas bulging of sealed aluminium alloy tube using resistance heating. Manuf. Rev. 2014,

1, 5. [CrossRef]

Maeno, T.; Mori, K.-I.; Unou, C. Optimization of condition in Hot Gas Bulging of Aluminum Alloy tube using Resistance Heating

set into dies. Key Eng. Mater. 2011, 473, 69–74. [CrossRef]

Trân, R.; Reuther, F.; Winter, S.; Psyk, V. Process Development for a Superplastic Hot Tube Gas Forming Process of Titanium

(Ti-3Al-2.5V) Hollow Profiles. Metals 2020, 10, 1150. [CrossRef]

Talebi-Anaraki, A.; Chougan, M.; Loh-Mousavi, M.; Maeno, T. Hot Gas Forming of Aluminum Alloy Tubes Using Flame Heating.

J. Manuf. Mater. Process. 2020, 4, 56. [CrossRef]

Talebi-Anaraki, A.; Loh-Mousavi, M.; Wang, L.L. Experimental and numerical investigation of the influence of pulsating pressure

on hot tube gas forming using oscillating heating. Int. J. Adv. Manuf. Technol. 2018, 97, 3839–3848. [CrossRef]

Tang, Z.; Chen, J.; Dang, K.; Liu, G.; Tao, K. Experimental investigation into the electropulsing assisted pulsating gas forming of

CP-Ti tubes. J. Mater. Process.Technol. 2020, 278, 116492. [CrossRef]

Mori, K.; Bariani, P.F.; Behrens, B.-A.; Brosius, A.; Bruschi, S.; Maeno, T.; Merklein, M.; Yanagimoto, J. Hot stamping of ultra-high

strength steel parts. CIRP Ann. Manuf. Technol. 2017, 66, 755–777. [CrossRef]

Vadillo, L.; Santos, M.T.; Gutierrez, M.A.; Perez, I.; Gonzalez, B.; Uthiesangsuk, V. Simulation and Experimental results of the Hot

metal gas forming Technology for high strength steel and stainless steel tubes forming. AIP Conf. Proc. 2007, 908, 1199–1204.

[CrossRef]

Paul, A.; Strano, M. The Influence of Process Variables on the Gas Forming and press Hardening of Steel Tubes. J. Mater. Process.

Technol. 2015, 228, 160–169. [CrossRef]

Neugebauer, R.; Schieck, F. Active media-based form hardening of tubes and profiles. Prod. Eng. 2010, 4, 385–390. [CrossRef]

Bach, M.; Degenkolb, L.; Reuther, F.; Psyk, V.; Demuth, R.; Werner, M. Conductive Heating during Press Hardening by Hot Metal

Gas Forming for Curved Complex Part Geometries. Metals 2020, 10, 1104. [CrossRef]

Winter, S.; Werner, M.; Haase, R.; Psyk, V.; Fritsch, S.; Böhme, M.; Wagner, M. Processing Q&P steels by hot-metal gas forming:

Influence of local cooling rates on the properties and microstructure of a 3rd generation AHSS. J. Mater. Process. Technol. 2021,

293, 117070. [CrossRef]

Maeno, T.; Mori, K.; Adachi, K. Gas forming of ultra-high strength steel hollow part using air filled into sealed tube and resistance

heating. J. Mater. Process. Technol. 2014, 214, 97–105. [CrossRef]

Omar, A.; Tewari, A.; Narasimhan, K. Effect of bulge ratio on the deformation behaviour and fracture location during welded

steel tube hydroforming process. Results Mater. 2020, 6, 100096. [CrossRef]

Materials 2022, 15, 1322

24.

25.

26.

27.

18 of 18

Omar, A.; Tewari, A.; Narasimhan, K. Formability and microstructure evolution during hydroforming of drawing quality welded

steel tube. J. Strain Anal. Eng. Des. 2015, 50, 542–556. [CrossRef]

Talebi-Anaraki, A.; Maeno, T.; Ikeda, R.; Morishita, K.; Mori, K. Quenchability improvement and control simplification by ice

mandrel in hot stamping of ultra-high strength steel hollow parts. J. Manuf. Processes 2021, 64, 916–926. [CrossRef]

Yang, L.; Hu, G.; Liu, J. Investigation of forming limit diagram for tube hydroforming considering effect of changing strain path.

Int. J. Adv. Manuf. Technol. 2015, 79, 793–803. [CrossRef]

Maeno, T.; Mori, K.; Sakagami, M.; Nakao, Y.; Talebi-Anaraki, A. Minimisation of heating time for full hardening in hot stamping

using direct resistance heating. J. Manuf. Mater. Process. 2020, 4, 80. [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る