リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Bioactivity and Molecular Mechanism of Bifidobacterium longum on Anti-aging in Caenorhabditis elegans」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Bioactivity and Molecular Mechanism of Bifidobacterium longum on Anti-aging in Caenorhabditis elegans

菅原, 賢也 筑波大学 DOI:10.15068/0002001041

2021.08.17

概要

In modern society, human life expectancy is increasing compared to the past, and the term "health span" is beginning to be used in addition to the term "life span". Although currently there is a gap between life span and health span, reducing the gap by extending health span is important to improve people's quality of life. In this study, I analyzed the effects of bifidobacterium on health and anti-aging as candidates for bioactive substances that can extend health span. In this study, Caenorhabditis elegans was used as an experimental model organism.

Bifidobacterium is a probiotics, which are beneficial microorganisms to humans, and is the highest percentage of probiotics in the human gut. As such, they have considerable influence on the host and have beneficial effects on human health, including improvement of intestinal flora. Currently, various physiological effects of bifidobacterium are known to enhance immune function, alleviate allergies, and inhibit cancer development. Although its physiological effects on anti-aging have also been reported, there are many unresolved aspects of its effects, which I sought to elucidate in this study.

C. elegans is widely used as a model organism for biological experiments because it is easy to breed. In addition, it has basic organs such as the intestines, nerves, and reproductive organs, which enable it to simulate the digestion and absorption of food extracts and functional substances.

Although several previous studies have analyzed the bioactive effects of bifidobacterium using nematodes, there are only a few studies on anti-aging and there are many unexplored aspects. In this study, I fed sterilized Bifidobacterium longum (BR-108, BL) together with E. coli, the food source of nematodes, in order to explore a new bioactive effect of B. longum on anti-aging and to elucidate the mechanism of its action.

C. elegans fed a mixture of BL and E. coli increased various stress tolerance compared to C. elegans fed only E. coli. BL increased the expression of genes related to stress tolerance, which in turn increased the stress tolerance, extended the lifespan and prevented the loss of motility with aging. I also measured muscle mass, ATP levels, mitochondrial mass and mitochondrial membrane potential, and ROS levels in nematodes for further analysis of the significant suppression of age-related motility loss and found that BL-induced change of these phenotypes were upregulated. It was suggested that the maintenance of motility was caused by the effects on muscle and mitochondria. Compared to BL-induced changes in muscle mass, mitochondrial mass and membrane potential were substantially increased. Therefore, I hypothesized that BL has a greater effect on mitochondria, which produce ATP for muscle energy, than on muscle, and I used mitochondrial complex inhibitors to search for mitochondrial target sites for BL- induced effects in mitochondria. Mitochondria have five complexes, I, II, III, IV and V and some of the inhibitors suppressed the increase in motility and mitochondrial membrane potential. Although the target sites have yet to be elucidated, it is suggested that the mitochondrial electron transfer chain and ATP biosynthesis are important in the suppression of age-related decline of motility.

In order to analyze in more detail the mechanism of the bioactive activity of bifidobacterium that have been identified so far, the proteins in the insulin signaling pathway and p38 Mitogen Activated Protein Kinase (MAPK) pathway, which are signaling pathways involved in aging and stress tolerance, were analyzed in measure of oxidative stress tolerance, lifespan, and motility in the deficient mutants. Consequently, the phenotypes induced by BL were suppressed. These results suggested that BL caused the above bioactive effects through these signaling pathways. In addition to the previously revealed mechanism, I have further elucidated the mechanism.

Among the bioactive effects of bifidobacterium revealed in this study, the inhibition of age-related loss of motility and effects on muscle and mitochondria in C. elegans have not been reported to date. Although future studies in mice and other higher animals will be necessary, improving motility in aging individuals and maintaining muscle and mitochondrial function could prevent sarcopenia, a decline in muscle and motility with aging, and extend health span. Bifidobacterium intake may also develop into an inhibitory effect on Parkinson's disease (PD). PD is caused by aging and other factors and reduces mitochondrial homeostasis. Consequently, this causes dopaminergic neuronal degeneration. In the present study BL maintained the mitochondrial membrane potential in aging nematodes. This suggests that mitochondrial homeostasis is maintained and that BL has the potential to prevent PD. In the future, I plan to analyze the effects of bifidobacterium on preventing sarcopenia and inhibiting PD.

この論文で使われている画像

参考文献

1. Nations U, United Nations. World Population Prospects, The 2019 Revision - Volume I: Comprehensive Tables. 2019. doi:10.18356/15994a82-en

2. Kaeberlein M. How healthy is the healthspan concept? Geroscience. 2018;40: 361– 364.

3. Japanese Cabinet Office. Annual Report on the Ageing Society FY 2019.pdf. 2019. Available: https://www8.cao.go.jp/kourei/whitepaper/index-w.html

4. Siemann EH, Creasy LL. Concentration of the Phytoalexin Resveratrol in Wine. Am J Enol Vitic. 1992;43: 49–52.

5. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339: 1523–1526.

6. Li H, Xia N, Hasselwander S, Daiber A. Resveratrol and Vascular Function. Int J Mol Sci. 2019;20. doi:10.3390/ijms20092155

7. Gülçin İ. Antioxidant properties of resveratrol: A structure–activity insight. Innov Food Sci Emerg Technol. 2010;11: 210–218.

8. Hung LM, Chen JK, Huang SS, Lee RS, Su MJ. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc Res. 2000;47: 549–555.

9. Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, et al. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol. 2013;61: 215–226.

10. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1- dependent induction of autophagy. Cell Death Dis. 2010;1: e10.

11. Timmers S, Auwerx J, Schrauwen P. The journey of resveratrol from yeast to human. Aging . 2012;4: 146.

12. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430: 686–689.

13. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403: 795–800.

14. Li W, Zhang B, Tang J, Cao Q, Wu Y, Wu C. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through …. Journal of. 2007. Available: https://www.jneurosci.org/content/27/10/2606.short

15. Singh S, Kumar PU, Thakur S, Kiran S, Sen B, Sharma S, et al. Expression/localization patterns of sirtuins (SIRT1, SIRT2, and SIRT7) during progression of cervical cancer and effects of sirtuin inhibitors on growth of cervical cancer cells. Tumor Biology. 2015;36: 6159–6171.

16. Tissenbaum HA, Ruvkun G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics. 1998;148: 703– 717.

17. Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet. 2001;28: 139–145.

18. Hesp K, Smant G, Kammenga JE. Caenorhabditis elegans DAF-16/FOXO transcription factor and its mammalian homologs associate with age-related disease. Exp Gerontol. 2015;72: 1–7.

19. Lapierre LR, Hansen M. Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab. 2012;23: 637–644.

20. Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;47: 1304–1309.

21. Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Kim DH. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet. 2006;2: e183.

22. Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A. 2005;102: 4494– 4499.

23. Morley JF, Morimoto RI. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell. 2004;15: 657–664.

24. Blackwell TK, Sewell AK, Wu Z, Han M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics. 2019;213: 329–360.

25. Zheng S, Chiu H, Boudreau J, Papanicolaou T, Bendena W, Chin-Sang I. A functional study of all 40 Caenorhabditis elegans insulin-like peptides. J Biol Chem. 2018;293: 16912–16922.

26. Wang Y, Tissenbaum HA. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev. 2006;127: 48–56.

27. Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120: 2479–2487.

28. Galbadage T, Shepherd TF, Cirillo SLG, Gumienny TL, Cirillo JD. The Caenorhabditis elegans p38 MAPK Gene plays a key role in protection from mycobacteria. Microbiologyopen. 2016;5: 436–452.

29. Tenor JL, Aballay A. A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep. 2008;9: 103–109.

30. Cheesman HK, Feinbaum RL, Thekkiniath J, Dowen RH, Conery AL, Pukkila- Worley R. Aberrant Activation of p38 MAP Kinase-Dependent Innate Immune Responses Is Toxic to Caenorhabditis elegans. G3 . 2016;6: 541–549.

31. Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK, et al. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev. 2005;19: 2278–2283.

32. Mukhopadhyay A, Oh SW, Tissenbaum HA. Worming pathways to and from DAF- 16/FOXO. Exp Gerontol. 2006;41: 928–934.

33. Hsu A-L, Murphy CT, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003;300: 1142–1145.

34. Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004;131: 3897–3906.

35. Bernet MF, Brassart D, Neeser JR, Servin AL. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen- cell interactions. Appl Environ Microbiol. 1993;59: 4121–4128.

36. Mitsuoka T. Taxonomy and Ecology of Bifidobacteria. Bifidobact Microflora. 1984;3: 11–28.

37. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90: 859–904.

38. Reuter G. The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol. 2001;2: 43–53.

39. Requena T, Burton J, Matsuki T, Munro K, Simon MA, Tanaka R, et al. Identification, detection, and enumeration of human bifidobacterium species by PCR targeting the transaldolase gene. Appl Environ Microbiol. 2002;68: 2420–2427.

40. Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C. bifidobacteria as probiotic agents--physiological effects and clinical benefits. Aliment Pharmacol Ther. 2005;22: 495–512.

41. Hütt P, Shchepetova J, Loivukene K, Kullisaar T, Mikelsaar M. Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero-and uropathogens. J Appl Microbiol. 2006;100: 1324–1332.

42. Chick H, Shin HS, Ustunol Z. Growth and Acid Production by Lactic Acid Bacteria and Bifidobacteria Grown in Skim Milk Containing Honey. J Food Sci. 2001;66: 478–481.

43. MITSUOKA, T. Die Darmflora bei Menschen. I. Mitteilung. Die Zusammensetzung der Faekalflora der verschiedenen Altersgruppen. Zbl Bakt Hyg I Abt Orig A. 1972;233: 333–342.

44. Mitsuoka T. Bifidobacteria and their role in human health. J Ind Microbiol. 1990;6: 263–267.

45. Anukam KC, Reid G. Probiotics: 100 years (1907--2007) after Elie Metchnikoff’s observation. Communicating current research and educational topics and trends in applied microbiology. 2007;1: 466–474.

46. Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Molecular Communication with the Immune System. Front Microbiol. 2017;8: 2345.

47. Grönlund M-M, Gueimonde M, Laitinen K, Kociubinski G, Grönroos T, Salminen S, et al. Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clinical & Experimental Allergy. 2007;37: 1764–1772.

48. Singh J, Rivenson A, Tomita M, Shimamura S, Ishibashi N, Reddy BS. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis. 1997;18: 833–841.

49. Foster JA, McVey Neufeld K-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36: 305–312.

50. Ticinesi A, Lauretani F, Milani C, Nouvenne A, Tana C, Del Rio D, et al. Aging Gut Microbiota at the Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut–Muscle Axis? Nutrients. 2017;9: 1303.

51. Grosicki GJ, Fielding RA, Lustgarten MS. Gut Microbiota Contribute to Age- Related Changes in Skeletal Muscle Size, Composition, and Function: Biological Basis for a Gut-Muscle Axis. Calcif Tissue Int. 2018;102: 433–442.

52. Arboleya S, Watkins C, Stanton C, Ross RP. Gut Bifidobacteria Populations in Human Health and Aging. Front Microbiol. 2016;7: 1204.

53. Knight CG, Patel MN, Azevedo RBR, Leroi AM. A novel mode of ecdysozoan growth in Caenorhabditis elegans. Evol Dev. 2002;4: 16–27.

54. Stiernagle T. Maintenance of C. elegans. WormBook. 2006; 1–11.

55. Nigon VM, Félix M-A. History of research on C. elegans and other free-living nematodes as model organisms. WormBook. 2017;2017: 1–84.

56. Son HG, Altintas O, Kim EJE, Kwon S, Lee S-JV. Age-dependent changes and biomarkers of aging in Caenorhabditis elegans. Aging Cell. 2019;18: e12853.

57. Kim W, Underwood RS, Greenwald I, Shaye DD. OrthoList 2: A New Comparative Genomic Analysis of Human and Caenorhabditis elegans Genes. Genetics. 2018;210: 445–461.

58. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77: 71–94.

59. Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet. 2014;5: 279.

60. Cooper JF, Van Raamsdonk JM. Modeling Parkinson’s Disease in C. elegans. J Parkinsons Dis. 2018;8: 17–32.

61. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391: 806–811.

62. Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods. 2013;10: 741–743.

63. Dirksen P, Marsh SA, Braker I, Heitland N, Wagner S, Nakad R, et al. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host- microbiome model. BMC Biol. 2016;14: 38.

64. Zhang F, Berg M, Dierking K, Félix M-A, Shapira M, Samuel BS, et al. Caenorhabditis elegans as a Model for Microbiome Research. Front Microbiol. 2017;8: 485.

65. Thammawong N, Takahashi H, Sugawara T, Sakamoto K, Others. α-Mangostin Promotes DAF-16-Mediated Thermotolerance in Caenorhabditis elegans. Food Nutr Sci. 2018;9: 693.

66. Sugawara T, Sakamoto K. Killed Bifidobacterium longum enhanced stress tolerance and prolonged life span of Caenorhabditis elegans via DAF-16. Br J Nutr. 2018;120: 872–880.

67. Sugawara T, Saraprug D, Sakamoto K. Soy sauce increased the oxidative stress tolerance of nematode via p38 MAPK pathway. Biosci Biotechnol Biochem. 2019;83: 709–716.

68. Sugawara T, Furuhashi T, Shibata K, Abe M, Kikuchi K, Arai M, et al. Fermented product of rice with Lactobacillus kefiranofaciens induces anti-aging effects and heat stress tolerance in nematodes via DAF-16. Biosci Biotechnol Biochem. 2019;83: 1484–1489.

69. Sugawara T, Sakamoto K. Quercetin enhances motility in aged and heat-stressed Caenorhabditis elegans nematodes by modulating both HSF-1 activity, and insulin- like and p38-MAPK signalling. PLoS One. 2020;15: e0238528.

70. Andersen ML, Winter LMF. Animal models in biological and biomedical research - experimental and ethical concerns. An Acad Bras Cienc. 2019;91: e20170238.

71. Avila D, Helmcke K, Aschner M. The Caenorhabiditis elegans model as a reliable tool in neurotoxicology. Hum Exp Toxicol. 2012;31: 236–243.

72. Komura T, Yasui C, Miyamoto H, Nishikawa Y. Caenorhabditis elegans as an alternative model host for legionella pneumophila, and protective effects of Bifidobacterium infantis. Appl Environ Microbiol. 2010;76: 4105–4108.

73. Komura T, Ikeda T, Yasui C, Saeki S, Nishikawa Y. Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans. Biogerontology. 2013;14: 73–87.

74. Martorell P, Llopis S, González N, Chenoll E, López-Carreras N, Aleixandre A, et al. Probiotic Strain Bifidobacterium animalis subsp. lactis CECT 8145 Reduces Fat Content and Modulates Lipid Metabolism and Antioxidant Response in Caenorhabditis elegans. J Agric Food Chem. 2016;64: 3462–3472.

75. Zhao L, Zhao Y, Liu R, Zheng X, Zhang M, Guo H, et al. The Transcription Factor DAF-16 is Essential for Increased Longevity in C. elegans Exposed to Bifidobacterium longum BB68. Sci Rep. 2017;7: 7408.

76. Sun S, Ohta A, Kuhara A, Nishikawa Y, Kage-Nakadai E. daf-16/FOXO isoform b in AIY neurons is involved in low preference for Bifidobacterium infantis in Caenorhabditis elegans. Neurosci Res. 2020;150: 8–16.

77. Sun S, Mizuno Y, Komura T, Nishikawa Y, Kage-Nakadai E. Toll-like receptor homolog TOL-1 regulates Bifidobacterium infantis-elicited longevity and behavior in Caenorhabditis elegans. Biosci Microbiota Food Health. 2019;38: 105–110.

78. Roselli M, Schifano E, Guantario B, Zinno P, Uccelletti D, Devirgiliis C. Caenorhabditis elegans and Probiotics Interactions from a Prolongevity Perspective. Int J Mol Sci. 2019;20. doi:10.3390/ijms20205020

79. Lee J, Choe J, Kim J, Oh S, Park S, Kim S, et al. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections. Lett Appl Microbiol. 2015;61: 523–530.

80. Nematode Growth Medium (NGM). Cold Spring Harb Protoc. 2014;2014: db.rec081299.

81. Zhang Y, Chen D, Smith MA, Zhang B, Pan X. Selection of Reliable Reference Genes in Caenorhabditis elegans for Analysis of Nanotoxicity. PLoS One. 2012;7: e31849.

82. Wang E, Wink M. Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan. PeerJ. 2016;4: e1879.

83. James J, Fiji N, Roy D, Mg DA, Shihabudeen MS, Chattopadhyay D, et al. A rapid method to assess reactive oxygen species in yeast using H 2 DCF-DA. Anal Methods. 2015;7: 8572–8575.

84. Gandhi S, Santelli J, Mitchell DH, Stiles JW, Sanadi DR. A simple method for maintaining large, aging populations of Caenorhabditis elegans. Mech Ageing Dev. 1980;12: 137–150.

85. Avery L, Shtonda BB. Food transport in the C. elegans pharynx. J Exp Biol. 2003. Available: https://jeb.biologists.org/content/206/14/2441.short

86. Squier TC. Oxidative stress and protein aggregation during biological aging. Exp Gerontol. 2001;36: 1539–1550.

87. Murakami S, Johnson TE. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics. 1996;143: 1207–1218.

88. Muñoz MJ. Longevity and heat stress regulation in Caenorhabditis elegans. Mech Ageing Dev. 2003;124: 43–48.

89. Honda Y, Honda S. The daf‐2 gene network for longevity regulates oxidative stress resistance and Mn‐superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 1999;13: 1385–1393.

90. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24: R453-62.

91. Mustafi SB, Chakraborty PK, Dey RS, Raha S. Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt. Cell Stress Chaperones. 2009;14: 579.

92. Hideg E, Jansen MAK, Strid A. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 2013;18: 107–115.

93. Zhou KI, Pincus Z, Slack FJ. Longevity and stress in Caenorhabditis elegans. Aging . 2011;3: 733–753.

94. Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS- induced health benefits. Nat Med. 2014;20: 709–711.

95. Hahm J-H, Jeong C, Lee W, Koo HJ, Kim S, Hwang D, et al. A cellular surveillance and defense system that delays aging phenotypes in C. elegans. Aging . 2020;12: 8202–8220.

96. Wang H, Webster P, Chen L, Fisher AL. Cell-autonomous and non-autonomous roles of daf-16 in muscle function and mitochondrial capacity in aging C. elegans. Aging . 2019;11: 2295–2311.

97. Breckenridge DG, Kang B-H, Kokel D, Mitani S, Staehelin LA, Xue D. Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. Mol Cell. 2008;31: 586– 597.

98. Gaffney CJ, Pollard A, Barratt TF, Constantin-Teodosiu D, Greenhaff PL, Szewczyk NJ. Greater loss of mitochondrial function with ageing is associated with earlier onset of sarcopenia in C. elegans. Aging . 2018;10: 3382.

99. Tang X, Luo Y-X, Chen H-Z, Liu D-P. Mitochondria, endothelial cell function, and vascular diseases. Front Physiol. 2014;5: 175.

100. Detaille D, Pasdois P, Sémont A, Dos Santos P, Diolez P. An old medicine as a new drug to prevent mitochondrial complex I from producing oxygen radicals. PLoS One. 2019;14: e0216385.

101. Lay S, Sanislav O, Annesley SJ, Fisher PR. Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells. Methods Mol Biol. 2016;1407: 41–61.

102. Zimmermann J, Obeng N, Yang W, Pees B, Petersen C, Waschina S, et al. The functional repertoire contained within the native microbiota of the model nematode Caenorhabditis elegans. ISME J. 2020;14: 26–38.

103. Michelsen KS, Aicher A, Mohaupt M, Hartung T, Dimmeler S, Kirschning CJ, et al. The role of toll-like receptors (TLRs) in bacteria-induced maturation of murine dendritic cells (DCS) Peptidoglycan and lipoteichoic acid are inducers of DC maturation and require TLR2. J Biol Chem. 2001;276: 25680–25686.

104. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem. 1999;274: 17406–17409.

105. Brash DE, Haseltine WA. UV-induced mutation hotspots occur at DNA damage hotspots. Nature. 1982;298: 189–192.

106. Rittié L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev. 2002;1: 705–720.

107. Ikehata H, Ono T. The mechanisms of UV mutagenesis. J Radiat Res. 2011;52: 115–125.

108. Wlaschek M, Tantcheva-Poór I, Naderi L, Ma W, Schneider LA, Razi-Wolf Z, et al. Solar UV irradiation and dermal photoaging. J Photochem Photobiol B. 2001;63: 41–51.

109. Prasanth MI, Gayathri S, Bhaskar JP, Krishnan V, Balamurugan K. Understanding the role of p38 and JNK mediated MAPK pathway in response to UV-A induced photoaging in Caenorhabditis elegans. J Photochem Photobiol B. 2020;205: 111844.

110. Momma K, Homma T, Isaka R, Sudevan S, Higashitani A. Heat-Induced Calcium Leakage Causes Mitochondrial Damage in Caenorhabditis elegans Body- Wall Muscles. Genetics. 2017;206: 1985–1994.

111. Belhadj Slimen I, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia. 2014;30: 513–523.

112. Henderson ST, Johnson TE. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol. 2001;11: 1975–1980.

113. Rhee SG. Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med. 1999;31: 53–59.

114. Ali S, Jain SK, Abdulla M, Athar M. Paraquat induced DNA damage by reactive oxygen species. Biochem Mol Biol Int. 1996;39: 63–67.

115. Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, et al. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 2008;22: 3236–3241.

116. Sakamoto T, Maebayashi K, Nakagawa Y, Imai H. Deletion of the four phospholipid hydroperoxide glutathione peroxidase genes accelerates aging in Caenorhabditis elegans. Genes Cells. 2014;19: 778–792.

117. Detienne G, Van de Walle P, De Haes W, Schoofs L, Temmerman L. SKN-1- independent transcriptional activation of glutathione S-transferase 4 (GST-4) by EGF signaling. Worm. 2016;5: e1230585.

118. Curtis R, O’Connor G, DiStefano PS. Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell. 2006;5: 119–126.

119. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426: 620.

120. MacNeil LT, Watson E, Arda HE, Zhu LJ, Walhout AJM. Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell. 2013;153: 240–252.

121. Zhou G, Huang C, Xing L, Li L, Jiang Y, Wei Y. Methionine increases yolk production to offset the negative effect of caloric restriction on reproduction without affecting longevity in C. elegans. Aging . 2020;12: 2680–2697.

122. Meissner B, Boll M, Daniel H, Baumeister R. Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans. J Biol Chem. 2004;279: 36739–36745.

123. Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol. 2003;95: 1717–1727.

124. Morley JE, Argiles JM, Evans WJ, Bhasin S, Cella D, Deutz NEP, et al. Nutritional Recommendations for the Management of Sarcopenia. J Am Med Dir Assoc. 2010;11: 391–396.

125. Taaffe DR. Sarcopenia--exercise as a treatment strategy. Aust Fam Physician. 2006;35: 130–134.

126. Ashrafi K. Obesity and the regulation of fat metabolism. WormBook. 2007; 1– 20.

127. Srinivasan S. Regulation of Body Fat in Caenorhabditis elegans. Annu Rev Physiol. 2015;77: 161–178.

128. Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem. 2002;80: 780–787.

129. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002;277: 44784–44790.

130. Schon EA, Santra S, Pallotti F, Girvin ME. Pathogenesis of primary defects in mitochondrial ATP synthesis. Semin Cell Dev Biol. 2001;12: 441–448.

131. Luz AL, Lagido C, Hirschey MD, Meyer JN. In Vivo Determination of Mitochondrial Function Using Luciferase-Expressing Caenorhabditis elegans: Contribution of Oxidative Phosphorylation, Glycolysis, and Fatty Acid Oxidation to Toxicant-Induced Dysfunction. Curr Protoc Toxicol. 2016;69: 25.8.1-25.8.22.

132. Dudkina NV, Kouril R, Peters K, Braun H-P, Boekema EJ. Structure and function of mitochondrial supercomplexes. Biochim Biophys Acta. 2010;1797: 664–670.

133. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155: 160–171.

134. Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA. Respiratory active mitochondrial supercomplexes. Mol Cell. 2008;32: 529–539.

135. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, et al. Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect. 2011;119: 866–872.

136. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci. 2003;23: 10756–10764.

137. Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis. 2009;34: 279– 290.

138. Morris ME. Movement disorders in people with Parkinson disease: a model for physical therapy. Phys Ther. 2000;80: 578–597.

139. Kösel S, Hofhaus G, Maassen A, Vieregge P, Graeber MB. Role of mitochondria in Parkinson disease. Biol Chem. 1999;380: 865–870.

140. Thomas B, Beal MF. Parkinson’s disease. Hum Mol Genet. 2007;16 Spec No. 2: R183-94.

141. Sherer TB, Betarbet R, Greenamyre JT. Environment, mitochondria, and Parkinson’s disease. Neuroscientist. 2002;8: 192–197.

142. Perez-Pardo P, Dodiya HB, Engen PA, Naqib A, Forsyth CB, Green SJ, et al. Gut bacterial composition in a mouse model of Parkinson’s disease. Benef Microbes. 2018;9: 799–814.

143. Imai Y, Inoshita T, Meng H, Shiba-Fukushima K, Hara KY, Sawamura N, et al. Light-driven activation of mitochondrial proton-motive force improves motor behaviors in a Drosophila model of Parkinson’s disease. Commun Biol. 2019;2: 424.

144. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. [alpha]-synuclein locus triplication causes Parkinson’s disease. Science. 2003;302: 841.

145. Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2: a009399.

146. Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, et al. Familial Parkinson Mutant α-Synuclein Causes Dopamine Neuron Dysfunction in Transgenic Caenorhabditis elegans. J Biol Chem. 2006;281: 334–340.

147. Marcinko K, Steinberg GR. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise. Exp Physiol. 2014;99: 1581–1585.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る