リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Gapless fermionic excitation in the antiferromagnetic state of ytterbium zigzag chain」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Gapless fermionic excitation in the antiferromagnetic state of ytterbium zigzag chain

Hori, Fumiya Kinjo, Katsuki Kitagawa, Shunsaku Ishida, Kenji Mizutani, Souichiro Yamamoto, Rikako Ohmagari, Yudai Onimaru, Takahiro 京都大学 DOI:10.1038/s43246-023-00381-4

2023.07.21

概要

The emergence of charge-neutral fermionic excitations in magnetic systems is one of the unresolved issues in recent condensed matter physics. This type of excitations has been observed in various systems, such as low-dimensional quantum spin liquids, Kondo insulators, and antiferromagnetic insulators. Here, we report the presence of a pronounced gapless spin excitation in the low-temperature antiferromagnetic state of YbCuS₂ semiconductor, where trivalent ytterbium atoms form a zigzag chain structure. We confirm the presence of this gapless excitations by a combination of experimental probes, namely ⁶³/⁶⁵Cu-nuclear magnetic resonance and nuclear quadrupole resonance, as well as specific heat measurements, revealing a linear low-temperature behavior of both the nuclear spin-lattice relaxation rate 1/T₁ and the specific heat. This system provides a platform to investigate the origin of gapless excitations in spin chains and the relationship between emergent fermionic excitations and frustration.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Balents, L. Spin liquids in frustrated magnets. Nature 464, 199 (2010).

Majumdar, C. K. & Ghosh, D. K. On next-nearest-neighbor interaction in

linear chain. II. J. Math. Phys. 10, 1399 (1969).

Haldane, F. D. M. Spontaneous dimerization in the S = 1/2 Heisenberg

antiferromagnetic chain with competing interactions. Phys. Rev. B 25, 4925

(1982).

Okunishi, K. & Tonegawa, T. Magnetic phase diagram of the S = 1/2

antiferromagnetic zigzag spin chain in the strongly frustrated region: cusp and

plateau. J. Phys. Soc. Jpn. 72, 479 (2003).

Hikihara, T., Kecke, L., Momoi, T. & Furusaki, A. Vector chiral and multipolar

orders in the spin-12 frustrated ferromagnetic chain in magnetic field. Phys.

Rev. B 78, 144404 (2008).

Hikihara, T., Momoi, T., Furusaki, A. & Kawamura, H. Magnetic phase

diagram of the spin-12 antiferromagnetic zigzag ladder. Phys. Rev. B 81, 224433

(2010).

Maeshima, N. et al. Magnetic properties of a S = 1/2 zigzag spin chain

compound (N2H5)CuCl3. J. Phys. Condens. Matter 15, 3607 (2003).

Hase, M. et al. Magnetic properties of Rb2Cu2Mo3O12 including a onedimensional spin-12 Heisenberg system with ferromagnetic first-nearestneighbor and antiferromagnetic second-nearest-neighbor exchange

interactions. Phys. Rev. B 70, 104426 (2004).

Furukawa, S., Sato, M. & Onoda, S. Chiral order and electromagnetic

dynamics in one-dimensional multiferroic cuprates. Phys. Rev. Lett. 105,

257205 (2010).

Pregelj, M. et al. Spin-stripe phase in a frustrated zigzag spin-1/2 chain. Nat.

Commun. 6, 7255 (2015).

Rau, J. G. & Gingras, M. J. P. Frustration and anisotropic exchange in

ytterbium magnets with edge-shared octahedra. Phys. Rev. B 98, 054408

(2018).

Li, Y. et al. Gapless quantum spin liquid ground state in the two-dimensional

spin-1/2 triangular antiferromagnet YbMgGaO4. Sci. Rep. 5, 16419 (2015).

Li, Y. et al. Rare-earth triangular lattice spin liquid: a single-crystal study of

YbMgGaO4. Phys. Rev. Lett. 115, 167203 (2015).

Li, Y. et al. Muon spin relaxation evidence for the U(1) quantum spin-liquid

ground state in the triangular antiferromagnet YbMgGaO4. Phys. Rev. Lett.

117, 097201 (2016).

Liu, W. et al. Rare-earth chalcogenides: a large family of triangular lattice spin

liquid candidates. Chin. Phys. Lett. 35, 117501 (2018).

Ranjith, K. M. et al. Anisotropic field-induced ordering in the triangularlattice quantum spin liquid NaYbSe2. Phys. Rev. B 100, 224417 (2019).

Dai, P.-L. et al. Spinon fermi surface spin liquid in a triangular lattice

antiferromagnet NaYbSe2. Phys. Rev. X 11, 021044 (2021).

Li, Y.-D., Wang, X. & Chen, G. Anisotropic spin model of strong spin–orbitcoupled triangular antiferromagnets. Phys. Rev. B 94, 035107 (2016).

Li, Y.-D., Lu, Y.-M. & Chen, G. Spinon fermi surface U(1) spin liquid in the

spin–orbit-coupled triangular-lattice mott insulator YbMgGaO4. Phys. Rev. B

96, 054445 (2017).

Zhu, Z., Maksimov, P. A., White, S. R. & Chernyshev, A. L. Topography of

spin liquids on a triangular lattice. Phys. Rev. Lett. 120, 207203 (2018).

Ohmagari, Y. et al. Magnetic properties of rare-earth sulfides RCuS2 (R = Dy,

Ho, Er, Tm, and Yb). JPS Conf. Proc. 30, 011167 (2020).

Ohmagari, Y. et al. Quantum phase transitions in an Yb-based semiconductor

YbCuS2 with an effective spin-1/2 zigzag chain. J. Phys. Soc. Jpn. 89, 093701

(2020).

Xing, J. et al. Néel-type antiferromagnetic order and magnetic

field–temperature phase diagram in the spin-12 rare-earth honeycomb

compound YbCl3. Phys. Rev. B 102, 014427 (2020).

Higo, T. et al. Frustrated magnetism in the Heisenberg pyrochlore

antiferromagnets AYb2X4 (A = Cd, Mg; X = S, Se). Phys. Rev. B 95, 174443

(2017).

Quintero-Castro, D. L. et al. Coexistence of long- and short-range magnetic

order in the frustrated magnet SrYb2O4. Phys. Rev. B 86, 064203 (2012).

Gulay, L. D. & Olekseyuk, I. D. Crystal structures of the compounds RCuS2

(R = Dy, Ho, Yb, Lu) and Tm0.97Cu1.10S2. J. Alloys Compd. 402, 89 (2005).

Murugesan, T. & Gopalakrishnan, J. Rare earth copper sulphides (LnCuS2).

Indian J. Chem. 22A, 469 (1983).

Iizuka, R., Numakura, R., Michimura, S., Katano, S. & Kosaka, M. Magnetic

properties of rare-earth sulfide YbAgS2. Physica B: Condens. Matter 536,

314–316 (2018).

Rotter, M. et al. Spin-density-wave anomaly at 140 K in the ternary iron

arsenide BaFe2As2. Phys. Rev. B 78, 020503 (2008).

Baek, S.-H. et al. First-order magnetic transition in single-crystalline CaFe2As2

detected by 75As nuclear magnetic resonance. Phys. Rev. B 79, 052504 (2009).

Bak, P., Krinsky, S. & Mukamel, D. First-order transitions, symmetry, and the

ϵ expansion. Phys. Rev. Lett. 36, 52 (1976).

Vojta, M. Frustration and quantum criticality. Rep. Prog. Phys. 81, 064501

(2018).

ARTICLE

33. Franco, D. G., Prots, Y., Geibel, C. & Seiro, S. Fluctuation-induced first-order

transition in Eu-based trillium lattices. Phys. Rev. B 96, 014401 (2017).

34. Sakakibara, T. et al. Fluctuation-induced first-order transition and tricritical

point in EuPtSi. J. Phys. Soc. Jpn. 88, 093701 (2019).

35. Sachdev, S. NMR relaxation in half-integer antiferromagnetic spin chains.

Phys. Rev. B 50, 13006 (1994).

36. Ishida, K. et al. Spin correlation and spin gap in quasi-one-dimensional spin1/2 cuprate oxides: a 63Cu NMR study. Phys. Rev. B 53, 2827 (1996).

37. Takigawa, M., Motoyama, N., Eisaki, H. & Uchida, S. Dynamics in the S = 1/2

one-dimensional antiferromagnet Sr2CuO3 via 63Cu NMR. Phys. Rev. Lett. 76,

4612 (1996).

38. Zong, X. et al. 17O and 51V NMR for the zigzag spin-1 chain compound

CaV2O4. Phys. Rev. B 77, 014412 (2008).

39. Moriya, T. Nuclear magnetic relaxation in antiferromagnetics. Prog. Theor.

Phys. 16, 23 (1956).

40. Moriya, T. Nuclear magnetic relaxation in antiferromagnetics, II. Prog. Theor.

Phys. 16, 641 (1956).

41. Maegawa, S. Nuclear magnetic relaxation and electron-spin fluctuation in a

triangular-lattice Heisenberg antiferromagnet CsNiBr3. Phys. Rev. B 51, 15979

(1995).

42. Takeya, H. et al. Spin dynamics and spin freezing behavior in the twodimensional antiferromagnet NiGa2S4 revealed by Ga-NMR, NQR and μSR

measurements. Phys. Rev. B 77, 054429 (2008).

43. Sandvik, A. W. NMR relaxation rates for the spin-1/2 Heisenberg chain. Phys.

Rev. B 52, R9831 (1995).

44. Bredl, C. D. Specific heat of heavy fermions in Ce-based Kondo-lattices at very

low temperatures. J. Magn. Magn. Mater. 63-64, 355–357 (1987).

45. Gomilšek, M. et al. Field-induced instability of a gapless spin liquid with a

spinon Fermi surface. Phys. Rev. Lett. 119, 137205 (2017).

46. Yoshida, M., Takigawa, M., Yoshida, H., Okamoto, Y. & Hiroi, Z. Phase

diagram and spin dynamics in volborthite with a distorted kagome lattice.

Phys. Rev. Lett. 103, 077207 (2009).

47. Carter, G. C., Bennett, L. H. & Kahan, D. J. Metallic Shifts in NMR. Part I

(Pergamon, London, 1977).

48. Valfells, S. et al. Spin-density-wave state in (TMTSF)2PF6: a 77Se NMR study

at high magnetic fields. Phys. Rev. B 56, 2585–2593 (1997).

49. Clark, W. et al. NMR as a probe of incommensurate spin density waves in

organic metals. Synth. Met. 86, 1941–1947 (1997).

50. Brown, S. E., Clark, W. G. & Kriza, G. Relation between the dielectric function

and nuclear spin-lattice relaxation by thermal phase fluctuations of a pinned

spin-density wave. Phys. Rev. B 56, 5080–5083 (1997).

51. Starykh, O. A. & Balents, L. Excitations and quasi-one-dimensionality in fieldinduced nematic and spin density wave states. Phys. Rev. B 89, 104407 (2014).

52. Xiang, Z. et al. Quantum oscillations of electrical resistivity in an insulator.

Science 362, 65–69 (2018).

53. Sato, Y. et al. Unconventional thermal metallic state of charge-neutral

fermions in an insulator. Nat. Phys 15, 954 (2019).

54. Xiang, Z. et al. Unusual high-field metal in a Kondo insulator. Nat. Phys 17,

788–793 (2021).

55. Sato, Y. et al. Charge neutral fermions and magnetic field driven instability in

insulating YbIr3Si7. Nat. Commun. 13, 394 (2022).

56. Chowdhury, D., Sodemann, I. & Senthil, T. Mixed-valence insulators with

neutral Fermi surfaces. Nat. Commun. 9, 1766 (2018).

57. Varma, C. M. Majoranas in mixed-valence insulators. Phys. Rev. B 102,

155145 (2020).

58. Blaha, P. et al. WIEN2k. An Augmented Plane Wave + Local Orbitals Program

for Calculating Crystal Properties (Karlheinz Schwarz, Technical Universität

Wien, Vienna, 2018).

59. Momma, K. & Izumi, F. Vesta 3 for three-dimensional visualization of crystal,

volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).

Acknowledgements

The authors would like to thank Y. Maeno, S. Yonezawa, A. Ikeda, and Y. Matsuda for

their valuable discussions. This work was supported by the Kyoto University LTM

Center, Grants-in-Aid for Scientific Research (Grant Nos. JP19K14657, JP19H04696,

JP20H00130, JP20KK0061, JP21K18600, JP22H04933, JP22H01168, and JP23H01124)

and Grant-in-Aid for JSPS Research Fellows (Grant No. JP23KJ1247) from JSPS.

Author contributions

F.H. and K.I. designed the research. F.H., K.K., S.K., and K.I. performed NMR/NQR

measurements. Y.O. and T.O. synthesized and characterization of the bulk samples. S.M.,

R.Y., Y.O., and T.O. performed specific heat measurements. All authors contributed to

interpreting the experimental results and finalizing the manuscript.

Competing interests

The authors declare no competing interests.

COMMUNICATIONS MATERIALS | (2023)4:55 | https://doi.org/10.1038/s43246-023-00381-4 | www.nature.com/commsmat

ARTICLE

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-023-00381-4

Additional information

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s43246-023-00381-4.

Correspondence and requests for materials should be addressed to Fumiya Hori or

Kenji Ishida.

Peer review information Communications Materials thanks the anonymous reviewers

for their contribution to the peer review of this work. Primary Handling Editors: Alannah

Hallas and Aldo Isidori. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons licence and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

COMMUNICATIONS MATERIALS | (2023)4:55 | https://doi.org/10.1038/s43246-023-00381-4 | www.nature.com/commsmat

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る