リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Data-scientific Noise-removal Method for Efficient Submillimeter Spectroscopy With Single-dish Telescopes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Data-scientific Noise-removal Method for Efficient Submillimeter Spectroscopy With Single-dish Telescopes

Taniguchi Akio Tamura Yoichi Ikeda Shiro Takekoshi Tatsuya Kawabe Ryohei 名古屋大学

2021.09.01

概要

For submillimeter spectroscopy with ground-based single-dish telescopes, removing the noise contribution from the Earth’s atmosphere and the instrument is essential. For this purpose, here we propose a new method based on a data-scientific approach. The key technique is statistical matrix decomposition that automatically separates the signals of astronomical emission lines from the drift noise components in the fast-sampled (1–10 Hz) time-series spectra obtained by a position-switching (PSW) observation. Because the proposed method does not apply subtraction between two sets of noisy data (i.e., on-source and off-source spectra), it improves the observation sensitivity by a factor of 2 . It also reduces artificial signals such as baseline ripples on a spectrum, which may also help to improve the effective sensitivity. We demonstrate this improvement by using the spectroscopic data of emission lines toward a high-redshift galaxy observed with a 2 mm receiver on the 50 m Large Millimeter Telescope. Since the proposed method is carried out offline and no additional measurements are required, it offers an instant improvement on the spectra reduced so far with the conventional method. It also enables efficient deep spectroscopy driven by the future 50 m class large submillimeter single-dish telescopes, where fast PSW observations by mechanical antenna or mirror drive are difficult to achieve.

この論文で使われている画像

参考文献

Candès, E. J., Li, X., Ma, Y., & Wright, J. 2011, J. ACM, 58, 11

Candès, E. J., Romberg, J., & Tao, T. 2006, ITIT, 52, 489

Chapin, E. L., Berry, D. S., Gibb, A. G., et al. 2013, MNRAS, 430, 2545

Cortés, F., Reeves, R., & Bustos, R. 2016, RaSc, 51, 1166

Dempsey, J. T., Friberg, P., Jenness, T., et al. 2013, MNRAS, 430, 2534

Donoho, D. L. 2006, ITIT, 52, 1289

Endo, A., Karatsu, K., Laguna, A. P., et al. 2019, JATIS, 5, 1

Endo, A., Karatsu, K., Tamura, Y., et al. 2019, NatAs, 3, 989

Erickson, N., Narayanan, G., Goeller, R., & Grosslein, R. 2007, in ASP Conf. Ser. 375, From Z-Machines to ALMA: (Sub)Millimeter Spectroscopy of Galaxies, ed. A. J. Baker et al. (San Francisco, CA: ASP), 71

Harrington, K. C., Yun, M. S., Cybulski, R., et al. 2016, MNRAS, 458, 4383

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur, 585, 357

Heiles, C. 2007, PASP, 119, 643

Hoyer, S., & Hamman, J. J. 2017, JORS, 5, 10 Hunter, J. D. 2007, CSE, 9, 90

Iwai, K., Kubo, Y., Ishibashi, H., et al. 2017, EP&S, 69, 95

Kawabe, R., Kohno, K., Tamura, Y., et al. 2016, Proc. SPIE, 9906, 779

Klaassen, P., Mroczkowski, T., Bryan, S., et al. 2019, BAAS, 51, 7

Klein, B., Hochgürtel, S., Krämer, I., et al. 2012, A&A, 542, L3

Kohno, K., Tamura, Y., Inoue, A., et al. 2019, Astro2020: Decadal Survey on Astronomy and Astrophysics, Vol. 2020 (Washington, DC: National Academies), 402

Kojima, T., Kiuchi, H., Uemizu, K., et al. 2020, A&A, 640, L9 Lou, Z., xi Zuo, Y., jun Yao, Q., et al. 2020, ApOpt, 59, 3353

McKinney, W. 2010, Proc. 9th Python in Science Conf., 445, 56

Morii, M., Ikeda, S., Sako, S., & Ohsawa, R. 2017, ApJ, 835, 1

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 571, A28

Schieder, R., & Kramer, C. 2001, A&A, 373, 746

Schloerb, F. P. 2008, Proc. SPIE, 7012, 299

Taniguchi, A., Tamura, Y., Kohno, K., et al. 2019, PASJ, 72, 2

The Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123, T. A.

The Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33

The EHT Collaboration, et al. 2019, ApJL, 875, 4

Tibshirani, R. 1996, J. R. Stat. Soc. Series B Stat. Methodol., 58, 267

Uemura, M., Kawabata, K. S., Ikeda, S., & Maeda, K. 2015, PASJ, 67, 55

Ungerechts, H., Brunswig, W., Penalver, J., Perrigouard, A., & Sievers, A. 2000, Proc. SPIE, 4009, 327

Viero, M. P., Asboth, V., Roseboom, I. G., et al. 2014, ApJS, 210, 22

Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261

Wheeler, J., Hailey-Dunsheath, S., Shirokoff, E., et al. 2016, Proc. SPIE, 9914, 904

Wilson, T. L., Rohlfs, K., & Huttemeister, S. 2012, Tools of Radio Astronomy (Berlin: Springer)

Zhou, T., & Tao, D. 2011, in Proc. 28th Int. Conf. on Machine Learning (ICML-11) (Bellevue, WA: ICML), 33

Zuo, S., Chen, X., Ansari, R., & Lu, Y. 2018, AJ, 157, 4

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る