リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「On the pulse dynamics for reaction-diffusion systems on one-dimensional domains with various boundary conditions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

On the pulse dynamics for reaction-diffusion systems on one-dimensional domains with various boundary conditions

島谷, 晴基 北海道大学

2023.03.23

概要

Linearized eigenvalue problems are problems to investigate the stability of stationary
solutions for reaction-diffusion systems. Analytical methods for eigenvalues and eigenfunctions have been studied intensively for a long time. Sturm-Liouville theory and the SLEP
method ([31], [32]), which were developed in the course of these studies, are still powerful
tools for linearized eigenvalue problems. However, there are still few general methods to
analyze linearized eigenvalue problems. Against this background, many researchers have
studied this problem. In the process, studies of the one-dimensional Allen-Cahn equation
with the Neumann boundary condition have been developed.
(
∂t u = ϵ2 ∂xx u + u(1 − u2 ), t > 0, x ∈ (0, 1),
(3.1.1)
∂x u(t, 0) = ∂x u(t, 1) = 0,
where 0 < ϵ ≪ 1. (3.1.1) was rigorously studied by [4]. Fix r ∈ N. By many studies, we
see that there exists a stationary

 solution u(x; ϵ) of (3.1.1) satisfying being sufficiently
Pr
x−zj
j
close to j=1 (−1) tanh √2ϵ (j = 1, . . . , r), where zj = 2j−1
. Here r ∈ N denote the
2r
number of a stable front-type stationary solution S(x) of (3.1.1) and u(x; ϵ) is a function of
x with a parameter ϵ. Furthermore, starting from (3.1.1), various researches for 3.1.1 was
performed(e.g. [1], [2], [14]). Thereafter, Wakasa-Yotsutani([35], [36], [37], [38]) analyzed
next linearized eigenvalue problem for u(x; ϵ):
(
ϵ2 ∂xx φ(x) + F ′ (u(x; ϵ))φ(x) + λϕ(x) = 0, x ∈ (0, 1),
(3.1.2)
∂x φ(0) = ∂x φ(1) = 0,
where 0 < ϵ ≪ 1 and F (u) = u(1 − u2 ) or F (u) = sin u. [35], [36], [37], [38] reported
that all eigenvalues λn (n = 0, 1, 2, 3, . . .) of (3.1.2) and eigenfunctions φn (x) associated
with λn hold the following. In 3.1, ∼ means asymptotic equivalence, and we denote
r,ϵ
λn = λr,ϵ
n , φn = φn in the following (1) and (2). In addtion, The following results (1) and
(2) are rigorously proved in [35], [36], [37], [38]. ...

この論文で使われている画像

参考文献

[1] P. Brunovs´

y, B. Fiedler, Connecting orbits in scalar reaction diffusion equations II.

The complete solution, J. Differential Equations 81(1989).

[2] J. Carr, R. L. Pego, Metastable patterns in solutions of ut = ϵ2 uxx + f (u),

Communications on Pure and Applied Mathematics 42(1989), 523-576.

[3] G. A. Carpenter, A geometric approach to singular perturbation problems with applications to nerve impulse equations, J. Differential Equations 23(1977), 335-367.

[4] N. Chafee and E. F. Infante, A bifurcation problem for a nonliner partial differential

equation of parabolic type, Applicable Analysis 4 (1974/75),17-37.

[5] A. Doleman, R. A. Gardner and T. J.Kaper, Stability analysis of singular patterns in

the 1-D Gray-Scott model,physica D 122(1998), 1-36.

[6] Y. Du, B. Lou, R. Peng and M. Zhou, The Fisher-KPP equation over simple graphs:

Varied persistence states in river networks, J. Math. Biol. 80(2020),1559-1616.

[7] J. W. Evans, Nerve axon equations: IV. The stable and the unstable impulses,

Indiana Univ. Math. J. 24 (1975),1169-1190.

[8] S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems,

J. D. D. E.14(1)(2002), 85-137.

[9] S.-I. Ei, T. Ishimoto, Effect of boundary conditions on the dynamics of a pulse

solution for reaction-diffusion systems, Network and heterogeneous media Volume 8,

Number 1, March 2013, 191–209.

[10] S.-I. Ei, Ken Mitsuzono, H. Shimatani, The dynamics of pulse solutions for reaction diffusion systems on a star shaped metric graph with the Kirchhoff’s

boundary condition. Discrete and Continuous Dynamical Systems - Series B, 2022,

http://dx.doi.org/10.3934/dcdsb.2022209.

78

[11] S.-I. Ei, T. Ohta, Equation of motion for interacting pulses, Physical Review E, 50

No.6 (1994), 4672-4678.

[12] S.-I. Ei, H. Shimatani, T. Wakasa, Linearized eigenvalue problems associated with

multi-layered stationary solutions for reaction diffusion systems, currently writing.

[13] Paul. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, springer

(1979).

[14] G. Fusco and J. K. Hale, Slow-motion manifold,dormant instability and singular

Perturbatations, Journal of Dynamics and Different Equations 1(1989), 75-94.

[15] R. FitzHugh, Impulse and physiological states in theoretical models of nerve membrane, Biophysical. Journal 1(1961),445-466.

[16] R. M. Gray, Toeplitz and Circulant Matrices: A Review, Foundations and Trends ○

in Communications and Information Theory Vol. 2, No 3 (2006),155–239.

[17] S.P. Hastings, On the existence of homoclinic and periodic orbits for the FitzHughNagumo equations, The Quarterly Journal of Mathematics 27(1976),123-134.

[18] Y. Ishii, Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graph. Commnications on Pure and Aplied Analysis 20(4),

(2021),1633-1679 .

[19] Y.Ishii, K. Kurata, Existence and stability of one-peak symmetric stationary solutions for the Schnakenberg model with heterogeneity, Discrete and continuous dynamical systems 39(2019), 2807-2875.

[20] S. Iwasaki, Asyptotic convergence of solutions of Keller-Segel equations in network

shaped domains, Nonlinear Analysis 197(111839), 1-28, 2020.

[21] S. Iwasaki, S. Jimbo, and Y. Morita Standing waves of a reaction-diffusion equations

on an unbounded graph with two vertices to appear in SIAM J.Appl. Math.

[22] C. K. R. T. Jones, Stability of traveling wave solutions of the FitzHugh-Nagumo

system, Trans. Amer. Math. Soc. 286 (1984), 431-469.

[23] S. Jimbo and Y. Morita, Entire solutions to reaction-diffuson equations in multiple

half-lines with a junction, J. Differential Equatons 267(2019),1247-1276.

79

[24] S. Jimbo and Y. Morita, Asymptotic behavior of entire solutions to reaction diffusion equation in an infinite star graph, Discrete and continuous dynamical systems

41(2021).

[25] S. Jimbo and Y. Takazawa, Y-shaped graph and time entire solutions of a semilinear

parabolic equation, preprint.

[26] A. Kolmogorov, I. Petrovsky, and N. Piskunov, Etude de l’´equation de la diffusion

avec croissance de la quantit´e de mati´ere et son application ´a un probl´eme biologique,

Bjul. Moskowskogo Gos. Univ. Ser. Internet. Sec. A1(1937),1-26.

[27] K. Kawasaki and T. Ohta, Kink dynamics in one-dimensional nonlinear systems,Physica A 116(1982), 573-593.

[28] S. Kosugi, A semilinear elliptic equation in a thin network-shaped domains, J. Math.

Soc. Japan, Vol. 52, No. 3, 2000.

[29] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the IRE 50 (1962), 2061-2070.

[30] S. Nii, A topoligical proof of stability of N-front solutions of the FitzHugh-Nagumo

equations, J. Dynam. Diff.Eqs. 11 (1999), 515-555.

[31] Y. Nishiura, H. Fujii, Stability of singularly solutions to systems of reaction-diffusion

equations ,SIAM J. MATH, ANAL. Vol 18, 1987, 1726-1770.

[32] Y. Nishiura, Coexistence of Infinitely Many Stable Solutions to Reaction Diffusion

Systems in the Singular Limit, Dynamics Reported 3, Springer, 1994, 25-103.

[33] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937),

355-369.

[34] B. Sandstede, Stability of multiple-pulse solutions, Trans. Amer. Math. Soc.

350(1998), 429-472.

[35] T. Wakasa and S. Yotsutani, Representation formulas for some 1-dimensional linearized eigenvalue problems, Commun. Pure Appl. Anal. 7 (2008), 745–763.

[36] T. Wakasa and S. Yotsutani, Asymptotic profiles of eigenfunctions for some 1- dimensional linearized eigenvalue problems, Commun. Pure Appl. Anal. 9 (2010), 539–561.

80

[37] T. Wakasa, S. Yotsutani, Limiting classification on Linearized eigenvalue problems for 1-dimensional Allen-Cahn equation I-asymptotic formulas of eigenvalues,

J.Differential Equations 258(2015), 3960-4006.

[38] T. Wakasa S. Yotsutani, Limiting classification on Linearized eigenvalue problems

for 1-dimensional Allen-Cahn equation II-asymptotic formulas of eigenfunctions, J.

Differential Equations 261(2016), 5465-5498.

[39] E. Yanagida, Stability of fast traveling pulse solutions of FitzHugh-Nagumo equations, J. Math. Biol. 22 (1985), 81-104.

[40] E. Yanagida, Existence of stable stationary solutions of scalar reaction diffusion equations in thin tubular domains, Applicable Analysis 36 (1990), 171-188.

[41] E. Yanagida, Stability of nonconstant steady states in reaction-diffusion systems on

graphs, Japan J. Indust. Appl. Math. 18(2001), 25-42.

81

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る