リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the control of influenza and classical swine fever」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the control of influenza and classical swine fever

ENKHBOLD, Bazarragchaa 北海道大学

2021.09.24

概要

The current thesis study aims to contribute to the control of influenza and classical swine fever (CSF) as a representative transboundary diseases (TDs) in animals and humans. Due to the susceptibility of poultry and pigs to the TDs, the importance of implementing a better control strategy for these diseases is increasing globally.

In chapter I, essential information about the early diagnosis of avian influenza was provided. Wild waterfowl play an important role in virus spread in poultry farms. Therefore, the early detection of avian influenza virus (AIV) infections mainly caused by high pathogenicity avian influenza virus (HPAIV) is the key action in poultry. In the study, the novel kit was evaluated which was developed using an isothermal nucleic acid amplification approach for the human usage to detect influenza A and B viruses. The findings suggested that the kit can be used for poultry, especially chicken, to detect viral RNA of all subtypes of AIVs, including low pathogenicity avian influenza virus (LPAIV) and HPAIV, with high sensitivity and specificity. This kit is applicable for influenza diagnosis in both the laboratory and field conditions lacking satisfied laboratory facilities and well-trained personnel.

Chapter II focused on the contribution for zoonotic diseases, in terms of spillover infection with influenza A virus. Under the effort of zoonosis control, the development of an effective vaccine against such non-human influenza viruses in humans is crucial to engage with the one health concept. In this study, the variant H3N2 vaccine was prepared using the strategy of serial passages in mice and chicken embryos to increase vaccine yield, and its protective potency was evaluated in mice. The results obtained that the vaccine can protect against swine-origin H3N2 infection. The model established in this study could be applied for future preparation of an effective vaccine for humans against variant H3N2 infection. The outcomes can be used for better preparation and control of future pandemics.

In chapter III, the implication of the surveillance and implementation of oral vaccination was evaluated against CSF in wild boar in Gifu prefecture, Japan. The role of wild boar was assessed under the classical swine fever virus (CSFV) spread among the population. Moreover, to provide a better understanding about CSFV infection modes, CSFV infection forms were estimated based on the quantitative analysis. It was suggested that wild boars with acute, persistent, and chronic infections were the main actors in carrying and maintaining CSFV among the population. The implementation of the oral vaccine in wild boar led to an increase in the number of individuals with vaccine responses. Overall, this study provided quantitative information from the investigations of virological and epidemiological assessments that can be used to improve further surveillance activity and control measures.

These findings provided an important vision for the contribution of TD control focusing on influenza and CSF as representative diseases. This information is critical to construct comprehensive control measures for the eradication of TDs involving the early detection, preventive strategy with vaccine development, and a better evaluation system for preventive actions.

この論文で使われている画像

参考文献

1. Food and Agriculture Organization of the United Nations. The future of food and agriculture and trends and challanges. FAO: 2017. http://www.fao.org/3/i6583e/i6583e.pdf [assessed June 20, 2021].

2. Food and Agriculture Organization of the United Nations. FAO animal production and health paper: prevention and control of transboundary animal diseases. In. The empres concept paper (Livestock programme), FAO: 2001; Vol. 133. http://www.fao.org/3/W3737E/W3737E08.htm [assessed on Jan 10, 2021].

3. Roychoudhury, S., Das, A., Sengupta, P., Dutta, S., Roychoudhury, S., Choudhury, A.P., Ahmed, A.B.F., Bhattacharjee, S., Slama, P. Viral pandemics of the last four decades: pathophysiology, health impacts and perspectives. Int J Environ Res Public Health 2020, 17, 9411.

4. World Organisation for Animal Health. Manual of diagnostic tests and vaccines for terrestrial animals. In. Avian influenza (Infection with avian influenza viruses), 2018; 1−23. https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/23.03.04_-AI.pdf [assessed on May 27, 2021].

5. Ganges, L., Crooke, H.R., Bohorquez, J.A., Postel, A., Sakoda, Y., Becher, P., Ruggli, N. Classical swine fever virus: the past, present and future. Virus Res 2020, 289, 198151.

6. Obenauer, J.C., Denson, J., Mehta, P.K., Su, X., Mukatira, S., Finkelstein, D.B., Xu, X., Wang, J., Ma, J., Fan, Y., Rakestraw, K.M., Webster, R.G., Hoffmann, E., Krauss, S., Zheng, J., Zhang, Z., Naeve, C.W. Large-scale sequence analysis of avian influenza isolates. Science 2006, 311, 1576−1580.

7. Lee, C.W., Saif, Y.M. Avian influenza virus. Comp Immunol Microbiol Infect Dis 2009, 32, 301−310.

8. World Health Organisation. Antigenic and genetic characteristics of zoonotic influenza A viruses and development of candidate vaccine viruses for pandemic preparedness. Weekly Epidemiological Record, 96 (12), 88–104. https://apps.who.int/iris/handle/10665/340335 [assessed on Feb 02, 2021].

9. Howley, M., Knipe, D. Flaviviridae: the viruses and their replication. pp. 246-271. In: Fields Virology: Emerging Viruses, 7th ed. ; Wolters Kluwer: Philadelphia, PA, USA, 2020.

10. Isoda, N., Baba, K., Ito, S., Ito, M., Sakoda, Y., Makita, K. Dynamics of classical swine fever spread in wild boar in 2018–2019, Japan. Pathogens 2020, 9, 119.

11. Postel, A., Austermann-Busch, S., Petrov, A., Moennig, V., Becher, P. Epidemiology, diagnosis and control of classical swine fever: recent developments and future challenges. Transbound Emerg Dis 2017, 65, 248–261.

12. World Organization for Animal Health. Classical swine fever. Manual of diagnostic tests and vaccines for terrestrial animals. (2019). https://www.oie.int/standard- setting/terrestrial-manual/access-online/ [accessed on Nov 20, 2020].

13. Le, K.T., Okamatsu, M., Nguyen, L.T., Matsuno, K., Chu, D.H., Tien, T.N., Le, T.T., Kida, H., Sakoda, Y. Genetic and antigenic characterization of the first H7N7 low pathogenic avian influenza viruses isolated in Vietnam. Infect Genet Evol 2020, 78, 104117.

14. Bohorquez, J.A., Munoz-Gonzalez, S., Perez-Simo, M., Munoz, I., Rosell, R., Coronado, L., Domingo, M., Ganges, L. Foetal immune response activation and high replication rate during generation of classical swine fever congenital infection. Pathogens 2020, 9, 285.

15. Coronado, L., Bohorquez, J.A., Munoz-Gonzalez, S., Perez, L.J.,Rosell, R., Fonseca, O., Delgado, L., Perera, C.L., Frias, M.T., Ganges, L. Investigation of chronic and persistent classical swine fever infections under field conditions and their impact on vaccine efficacy. BMC Vet Res 2019, 15, 247-260.

16. Okamatsu, M., Hiono, T., Kida, H., Sakoda, Y. Recent developments in the diagnosis of avian influenza. Vet J 2016, 215, 82−86.

17. Tsukamoto, K., Noguchi, D., Suzuki, K., Shishido, M., Ashizawa, T., Kim, M.C., Lee, Y.J., Tada, T. Broad detection of diverse H5 and H7 hemagglutinin genes of avian influenza viruses by real-time reverse transcription-PCR using primer and probe sets containing mixed bases. J Clin Microbiol 2010, 48, 4275−4278.

18. Lee, C.W., Suarez, D.L. Application of real-time RT-PCR for the quantitation and competitive replication study of H5 and H7 subtype avian influenza virus. J Virol Methods 2004, 119, 151−158.

19. Bai, G.R., Sakoda, Y., Mweene, A.S., Fujii, N., Minakawa, H., Kida, H. Improvement of a rapid diagnosis kit to detect either influenza A or B virus infections. J Vet Med Sci 2006, 68, 35−40.

20. Manzoor, R., Sakoda, Y., Sakabe, S., Mochizuki, T., Namba, Y., Tsuda, Y., Kida, H. Development of a pen-site test kit for the rapid diagnosis of H7 highly pathogenic avian influenza. Virology 2008, 70, 557−562.

21. Chiarella, F.C., Culebras, E., Fuentes-Ferrer, M.E., Picazo, J.J. Evaluation of the Alere i Influenza A&B assay for rapid identification of influenza A and influenza B viruses. J Med Microbiol 2016, 65, 456−461.

22. Hurtado, J.C., Mosquera, M.M., Lazzari, E.D., Martinez, E., Torner, N., Isanta, R., Molina, P.D., Pumarola, T., Marcos, M.A., Vila, J. Evaluation of a new, rapid, simple test for the detection of influenza virus. BMC Infect Dis 2015, 15, 44.

23. Menova, P., Raindlova, V., Hocek, M. Scope and limitations of the nicking enzyme amplification reaction for the synthesis of base-modified oligonucleotides and primers for PCR. Bioconjug Chem 2013, 24, 1081−1093.

24. Wang, H., Deng, J., Tang, Y.W. Profile of the Alere i Influenza A & B assay: a pioneering molecular point-of-care test. Expert Rev Mol Diagn 2018, 18, 403-409.

25. Bell, J., Bonner, A., Cohen, D.M., Birkhahn, R., Yogev, R., Triner, W., Cohen, J., Palavecino, E., Selvarangan, R. Multicenter clinical evaluation of the novel Alere i Influenza A&B isothermal nucleic acid amplification test. J Clin Virol 2014, 61, 81−86.

26. Chapin, K.C., Flores-Cortez, E. J. Performance of the molecular Alere I influenza A&B test compared to that of the xpert flu A/B assay. J Clin Microbiol 2015, 53, 706−709.

27. Nguyen, L.T., Firestone, S.M., Stevenson, M.A., Young, N.D., Sims, L.D., Chu, D.H., Nguyen, T.N., Van Nguyen, L., Thanh Le, T., Van Nguyen, H., Nguyen, H.N., Tien, T.N., Nguyen, T.D., Tran, B.N., Matsuno, K., Okamatsu, M., Kida, H., Sakoda, Y. A systematic study towards evolutionary and epidemiological dynamics of currently predominant H5 highly pathogenic avian influenza viruses in Vietnam. Sci Rep 2019, 9, 7723.

28. Ohkawara, A., Okamatsu, M., Ozawa, M., Chu, D.H., Nguyen, L.T., Hiono, T., Matsuno, K., Kida, H., Sakoda, Y. Antigenic diversity of H5 highly pathogenic avian influenza viruses of clade 2.3.4.4 isolated in Asia. Microbiol Immunol 2017, 61, 149−158.

29. Hiono, T., Okamatsu, M., Matsuno, K., Haga, A., Iwata, R., Nguyen, L.T., Suzuki, M., Kikutani, Y., Kida, H., Onuma, M., Sakoda, Y. Characterization of H5N6 highly pathogenic avian influenza viruses isolated from wild and captive birds in the winter season of 2016−2017 in Northern Japan. Microbiol Immunol 2017, 61, 387−397.

30. Shibata, A., Okamatsu, M., Sumiyoshi, R., Matsuno, K., Wang, Z.J., Kida, H., Osaka, H., Sakoda, Y. Repeated detection of H7N9 avian influenza viruses in raw poultry meat illegally brought to Japan by international flight passengers. Virology 2018, 524, 10−17.

31. Reed, L.J., Muench, H. A simple method of estimating fifty per cent endpoints. Am J Hyg 1938, 27, 493–497.

32. Bai, G.R., Sakoda, Y., Mweene, A.S., Fujii, N., Minakawa, H., Kida, H. Evaluation of the Espline Influenza A&B-N kit for the diagnosis of avian and swine influenza. Microbiol Immunol 2005, 49, 1063−1067.

33. Lau, L.T., Banks, J., Aherne, R., Brown, I.H., Dillon, N., Collins, R.A., Chan, K.Y., Fung, Y.W., Xing, J., Yu, A.C. Nucleic acid sequence-based amplification methods to detect avian influenza virus. Biochem Biophys Res Commun 2004, 313, 336−342.

34. Saito, T., Tanikawa, T., Uchida, Y., Takemae, N., Kanehira, K., Tsunekuni, R. Intracontinental and intercontinental dissemination of Asian H5 highly pathogenic avian influenza virus (clade 2.3.4.4) in the winter of 2014-2015. Rev Med Virol 2015, 25, 388−405.

35. Kanehira, K., Uchida, Y., Takemae, N., Hikono, H., Tsunekuni, R., Saito, T. Characterization of an H5N8 influenza A virus isolated from chickens during an outbreak of severe avian influenza in Japan in April 2014. Arch Virol 2015, 160, 1629−1643.

36. Takemae, N., Tsunekuni, R., Sharshov, K., Tanikawa, T., Uchida, Y., Ito, H., Soda, K., Usui, T., Sobolev, I., Shestopalov, A., Yamaguchi, T., Mine, J., Ito, T., Saito, T. Five distinct reassortants of H5N6 highly pathogenic avian influenza A viruses affected Japan during the winter of 2016−2017. Virology 2017, 512, 8−20.

37. Davis, S., Allen, A.J., O'Leary, R., Power, M., Price, D.A., Simpson, A.J., Tunbridge, A., Vale, L., Whiteside, M., Evans, C., Raza, M. Diagnostic accuracy and cost analysis of the Alere i Influenza A&B near-patient test using throat swabs. J Hosp Infect 2017, 97, 301−309.

38. World Health Organization. Recommended composition of influenza virus vaccines for use in the 2021-2022 northern hemisphere influenza season; 2021; 1-10. https://www.who.int/influenza/vaccines/virus/recommendations/202102_recommen dation.pdf [assessed on May 20, 2021].

39. Mostafa, A., Abdelwhab, E.M., Mettenleiter, T.C., Pleschka, S. Zoonotic potential of influenza A viruses: a comprehensive overview. Viruses 2018, 10, 497.

40. Nelson, M.I., Viboud, C., Vincent, A.L., Culhane, M.R., Detmer, S.E., Wentworth, D.E., Rambaut, A., Suchard, M.A., Holmes, E.C., Lemey, P. Global migration of influenza A viruses in swine. Nat Commun 2015, 6, 6696.

41. Lindstrom, S., Garten, R., Balish, A., Shu, B., Emery, S., Berman, L., Barnes, N., Sleeman, K., Gubareva, L., Villanueva, J., Klimov, A. Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011. Emerg Infect Dis 2012, 18, 834–837.

42. Sun, X., Pulit-Penaloza, J.A., Belser, J.A., Pappas, C., Pearce, M.B., Brock, N., Zeng, H., Creager, H.M., Zanders, N., Jang, Y., Tumpey, T.M., Davis, C.T., Maines, T.R. Pathogenesis and transmission of genetically diverse swine-origin H3N2 variant influenza A viruses from multiple lineages isolated in the United States, 2011–2016. J Virol 2018, 92, e00665-00618.

43. Schicker, R.S., Rossow, J., Eckel, S., Fisher, N., Bidol, S., Tatham, L., Matthews- Greer, J., Sohner, K. Outbreak of influenza A(H3N2) variant virus infections among persons attending agricultural fairs housing infected swine–Michigan and Ohio, July–August 2016. Morbidity and Mortality Weekly Report, Centers for Disease Control and Prevention.: 2016; 1–4. https://www.cdc.gov/mmwr/volumes/65-/wr/mm6542a6541.htm [assessed on Feb 11, 2021].

44. Keitel, W.A., Jackson, L.A., Edupuganti, S., Winokur, P.L., Mulligan, M.J., Thornburg, N.J., Patel, S.M., Rouphael, N.G., Lai, L., Bangaru, S., McNeal, M.M., Bellamy, A.R., Hill, H.R. Safety and immunogenicity of a subvirion monovalent unadjuvanted inactivated influenza A(H3N2) variant vaccine in healthy persons ≥18 years old. J Infect Dis 2015, 212, 552−561.

45. Kishida, N., Fujisaki, S., Yokoyama, M., Sato, H., Saito, R., Ikematsu, H., Xu, H., Takashita, E., Tashiro, M., Takao, S., Yano, T., Suga, T., Kawakami, C., Yamamoto, M., Kajiyama, K., Saito, H., Shimada, S., Watanabe, S., Aoki, S., Taira, K., Kon, M., Lin, J. H., Odagiri, T. Evaluation of influenza virus A/H3N2 and B vaccines on the basis of cross-reactivity of postvaccination human serum antibodies against influenza viruses A/H3N2 and B isolated in MDCK cells and embryonated hen eggs. Clin Vaccine Immunol 2012, 19, 897–908.

46. Bangaru, S., Nieusma, T., Kose, N., Thornburg, N.J., Finn, J.A., Kaplan, B.S., King, H.G., Singh, V., Lampley, R.M., Sapparapu, G., Cisneros, A., Edwards, K.M., Slaughter, J.C., Edupuganti, S., Lai, L., Richt, J.A., Webby, R.J., Ward, A.B., Crowe Jr, J.E. Recognition of influenza H3N2 variant virus by human neutralizing antibodies. JCI Insight 2016, 1, e86673.

47. Loving, C.L., Lager, K.M., Vincent, A.L., Brockmeier, S.L., Gauger, P.C., Anderson, T.K., Kitikoon, P., Perez, D.R., Kehrli, M.E. Efficacy in pigs of inactivated and live attenuated influenza virus vaccines against infection and transmission of an emerging H3N2 similar to the 2011–2012 H3N2v. J Virol 2013, 87, 9895–9903.

48. Houser, K.H., Pearce, M.B., Katz, J.M., Tumpey, T.M. Impact of prior seasonal H3N2 influenza vaccination or infection on protection and transmission of emerging variants of influenza A(H3N2)v virus in ferrets. J Virol 2013, 87, 13480–13490.

49. Barman, S., Franks, J., Turner, J.C.,Yoon, S.W., Webster, R.G., Webby, R.J. Egg- adaptive mutations in H3N2v vaccine virus enhance egg-based production without loss of antigenicity or immunogenicity. Vaccine 2015, 33, 3186–3192.

50. Kameyama, K., Sakoda, Y., Tamai, K., Igarashi, H., Tajima, H., Mochizuki, T., Namba, Y., Kida, H. Development of an immunochromatographic test kit for rapid detection of bovine viral diarrhea virus antigen. J Virol Methods 2006, 138, 140–146.

51. Kirihara, Y., Takechi, M., Kurosaki, K., Kobayashi, Y., Kurosawa, T., Kurosaki, K., Kobayashi, Y., Kurosawa, Ts. Anesthetic effects of a mixture of medetomidine, midazolam and butorphanol in two strains of mice. Exp Anim 2013, 62, 173–180.

52. Hoffmann, E., Stech, J., Guan, Y., Webster, R.G., Perez, D.R. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 2001, 146, 2275–2289.

53. Wilson, A.I., Skehel, J.J., Wiley, D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature 1981, 289, 367–373.

54. Kida, H., Brown, L.E., Webster, R.G. Biological activity of monoclonal antibodies to operationally defined antigenic regions on the hemagglutinin molecule of A/Seal/Massachusetts/l /80 (H7N7) influenza virus. Virology 1982, 122, 38–47.

55. Hayashi, H., Isoda, N., Bazarragchaa, E., Nomura, N., Matsuno, K., Okamatsu, M., Kida, H., Sakoda, Y. Potency of an inactivated influenza vaccine against a challenge with A/Swine/Missouri/A01727926/2015 (H4N6) in mice for pandemic preparedness. Vaccines (Basel) 2020, 8, 768.

56. Johnson, C., Hohenboken, M., Poling, T., Jaehnig, P., Kanesa-Thasan, N. Safety and immunogenicity of cell culture-derived A/H3N2 variant influenza vaccines: a phase I randomized, observer-blind, dose-ranging study. J Infect Dis 2015, 212, 72–80.

57. Kaplan, B.S., Kimble, J.B., Chang, J., Anderson, T.K., Gauger, P.C., Janas- Martindale, A., Killian, M.L., Bowman, A.S., Vincent, A.L. Aerosol transmission from infected swine to ferrets of an H3N2 virus collected from an agricultural fair and associated with human variant infections. J Virol 2020, 94, e01009-01020.

58. Centers for Disease Control and Prevention. How influenza (Flu) vaccines are made? https://www.cdc.gov/flu/prevent/how-fluvaccine-made.htm [accessed on May 6, 2021].

59. Tseng, Y.C., Wu, C.Y., Liu, M.L., Chen, T.H., Chiang, W.L., Yu, Y.H., Jan, J.T., Lin, K.I., Wong, C.H., Ma, C. Egg-based influenza split virus vaccine with monoglycosylation induces cross-strain protection against influenza virus infections. Proc Natl Acad Sci USA 2019, 116, 4200–4205.

60. Brown, E.G., Liu, H., Chang Kit, L., Baird, S., Nesrallah, M. Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: identification of functional themes. Proc Natl Acad Sci USA 2001, 98, 6883– 6888.

61. Tate, M.D., Job, E.R., Brooks, A.G., Reading, P.C. Glycosylation of the hemagglutinin modulates the sensitivity of H3N2 influenza viruses to innate proteins in airway secretions and virulence in mice. J Virol 2011, 413, 84–92.

62. Rogers, G.N., Daniels, R.S., Skehel, J.J., Wiley, D.C., Wang, X., Higa, H.H., Paulson, J.C. Host-mediated selection of influenza virus receptor variants. J Biol Chem 1985, 260, 7362–7367.

63. Lu, B., Zhou, H., Ye, D., Kemble, G., Jin, H. Improvement of influenza A/Fujian/411/02 (H3N2) virus growth in embryonated chicken eggs by balancing the hemagglutinin and neuraminidase activities, using reverse genetics. J Virol 2005, 79, 6763–6771.

64. Kodihalli, S., Justewicz, D.M., Gubareva, L.V., Webster. R.G. Selection of a single amino acid substitution in the hemagglutinin molecule by chicken eggs can render influenza A virus (H3) candidate vaccine ineffective. J Virol 1995, 69, 4888–4897.

65. Okamatsu, M., Sakoda, Y., Hiono, T., Yamamoto, N., Kida, H. Potency of a vaccine prepared from A/swine/Hokkaido/2/1981 (H1N1) against A/Narita/1/2009 (H1N1) pandemic influenza virus strain. J Virol 2013, 10, 47.

66. Kumar, A., Meldgaard, T.S., Bertholet, S. Novel platforms for the development of a universal influenza vaccine. Front Immunol 2018, 9, 600.

67. Caldera, F., Mercer, M., Samson, S.I., Pitt, J.M., Hayney, M.S. Influenza vaccination in immunocompromised populations: strategies to improve immunogenicity. Vaccine 2021, 39, 15–23.

68. World Organization for Animal Health. Information on aquatic and terrestrial animal diseases: Classical Swine Fever (CSF). 2020. https://www.oie.int/en/animal-health- in-the-world/animal-diseases/Classical-swine-fever/ [accessed on June 10, 2021].

69. Cabezon, O., Colom-Cadena, A., Munoz-Gonzalez, S., Perez-Simo, M., Bohorquez, J.A., Rosell, R., Marco, I., Domingo, M., Lavin, S., Ganges, L. Post-natal persistent infection with classical swine fever virus in wild boar: a strategy for viral maintenance?. Transbound Emerg Dis 2017, 64, 651–655.

70. Shimizu, Y., Hayama, Y., Murato, Y., Sawai, K., Yamaguchi, E., Yamamoto, T. Epidemiology of classical swine fever in Japan: a descriptive analysis of the outbreaks in 2018–2019. Front Vet Sci 2020, 7, 573480.

71. Choe, S., Cha, R.M., Yu, D.S., Kim, K.S., Song, S., Choi, S.H., Jung, B.I.; Lim, S.I., Hyun, B.H., Park, B.K., An, D.J. Rapid spread of classical swine fever virus among South Korean wild boars in areas near the border with North Korea. Pathogens 2020, 9, 244.

72. Luo, Y., Ji, S., Liu, Y., Lei, J.L., Xia, S.L., Wang, Y., Du, M.L., Shao, L., Meng, X.Y., Zhou, M., Sun, Y., Qiu, H.J. Isolation and characterization of a moderately virulent classical swine fever virus emerging in China. Transbound Emerg Dis 2017, 64, 1848–1857.

73. Abe, M. External measurements of the Japanese wild boar (Sus scrofa leucomystax Temminck). J Mamm Soc Japan 1986, 11, 147–154.

74. Geocoding. https://www.geocoding.jp/ [accessed on May 26, 2021].

75. Vilcek, S., Herring, A.J., Herring, J.A., Nettleton, P.F., Lowings, J.P., Paton, D.J. Pestiviruses isolated from pigs, cattle and sheep can be allocated into at least three genogroups using polymerase chain reaction and restriction endonuclease analysis. Arch Virol 1994, 136, 309–323.

76. Sakoda, Y., Wakamoto, H., Tamura, T., Nomura, T., Naito. M., Aoki, H., Morita, H., Kida, H., Fukusho, A. Development and evaluation of indirect enzyme-linked immunosorbent assay for a screening test to detect antibodies against classical swine fever virus. Jpn J Vet Res 2012, 60, 85–94.

77. Hoffmann, B., Beer, M., Schelp, C., Schirrmeier, H., Depner, K. Validation of a real- time RT-PCR assay for sensitive and specific detection of classical swine fever. J Virol Methods 2005, 130, 36–44.

78. Meyer, D., Petrov, A., Becher, P. Inactivation of classical swine fever virus in porcine serum samples intended for antibody detection. Pathogens 2019, 8, 286.

79. Tetsuo, M., Matsuno, K., Tamura, T., Fukuhara, T., Kim, T., Okamatsu, M., Tautz, N., Matsuura, Y., Sakoda, Y. Development of a high-throughput serum neutralization test using recombinant pestiviruses possessing a small reporter tag. Pathogens 2020, 9, 188.

80. Prabhakaran, S. R-statistics. http://r-statistics.co/ [accessed on Feb 20, 2021].

81. Ministry of Agriculture, Forestry and Fisheries. Guidelines for field spraying of CSF oral vaccine. 2019. https://www.maff.go.jp/j/syouan/douei/csf/attach/pdf/domestic-109.pdf [accessed on May 11, 2021].

82. Kodera, Y. CSF-prevention of epidemics from a point of view of the ecology of wild boar. J Vet Epidemiol 2019, 23, 4–8.

83. Environmental Systems Research Institute. Multi-Distance Spatial Cluster Analysis (Ripley's K Function). https://pro.arcgis.com/en/pro-app/tool-reference/spatial- statistics/multi-distance-spatial-cluster-analysis.htm [accessed on June 4, 2021].

84. Ito, S., Jurado, C., Bosch, J., Ito, M., Sanchez-Vizcaino, J.M., Isoda, N., Sakoda, Y. Role of wild boar in the spread of classical swine fever in Japan. Pathogens 2019, 8, 206.

85. Kaden, V., Hänel, A., Renner, Ch., Gossger, K. Oral immunisation of wild boar against classical swine fever in Baden-Württemberg: development of the seroprevalences based on the hunting bag. Eur J Wild Res 2005, 51, 101–107.

86. Kaden, V., Lange, E., Kuster, H., Muller, T., Lange, B. An update on safety studies on the attenuated "RIEMSER Schweinepestoralvakzine" for vaccination of wild boar against classical swine fever. Vet Microbiol 2010, 143, 133–138.

87. Moennig, V., Floegel-Niesmann, G., Greiser-Wilke, I. Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J 2003, 165, 11–20.

88. Fritzemeier, J., Teuffert, J., Greiser-Wilke, I., Staubach, C., Schluter, H., Moennig, V. Epidemiology of classical swine fever in Germany in the 1990s. Vet Microbiol 2000, 77, 29–41.

89. Rossi, S., Staubach, C., Blome, S., Guberti, V., Thulke, H.H., Vos, A., Koenen, F., Le Potier, M.F. Controlling of CSFV in European wild boar using oral vaccination: a review. Front Microbiol 2015, 6, 1141.

90. An, D.J., Lim, S.I., Choe, S., Kim, K.S., Cha, R.M., Cho, I.S., Song, J.Y., Hyun, B.H., Park, B.K. Evolutionary dynamics of classical swine fever virus in South Korea: 1987-2017. Vet Microbiol 2018, 225, 79-88.

91. Hayama, Y., Shimizu, Y., Murato, Y., Sawai, K., Yamamoto, T. Estimation of infection risk on pig farms in infected wild boar areas-epidemiological analysis for the reemergence of classical swine fever in Japan in 2018. Prev Vet Med 2020, 175, 1-9.

92. Fukai, K., Nishi, T., Yamada, M., Ikezawa, M. Toward better control of classical swine fever in wild boars: susceptibility of boar-pig hybrids to a recent Japanese isolate and effectiveness of a bait vaccine. Vet Res 2020, 51, 96–103.

93. Kaden, V., Lange, B. Oral immunisation against classical swine fever (CSF): onset and duration of immunity. Vet Microbiol 2001, 82, 301–310.

94. Saïd, S., Tolon, V., Brandt, S., Baubet, E. Sex effect on habitat selection in response to hunting disturbance: the study of wild boar. Eur J Wildl Res 2011, 58, 107-115.

95. Boitani, L., Mattei, L., Nonis, D., Corsi, F. Spatial and activity patterns of wild boars in Tuscany, Italy. J Mamm 1994, 75, 600-612.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る