リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Collagen-VI supplementation by cell transplantation improves muscle regeneration in Ullrich congenital muscular dystrophy model mice

Takenaka-Ninagawa, Nana Kim, Jinsol Zhao, Mingming Sato, Masae Jonouchi, Tatsuya Goto, Megumi Yoshioka, Clémence Kiho Bourgeois Ikeda, Rukia Harada, Aya Sato, Takahiko Ikeya, Makoto Uezumi, Akiyoshi Nakatani, Masashi Noguchi, Satoru Sakurai, Hidetoshi 京都大学 DOI:10.1186/s13287-021-02514-3

2021

概要

[Background] Mesenchymal stromal cells (MSCs) function as supportive cells on skeletal muscle homeostasis through several secretory factors including type 6 collagen (COL6). Several mutations of COL6A1, 2, and 3 genes cause Ullrich congenital muscular dystrophy (UCMD). Skeletal muscle regeneration deficiency has been reported as a characteristic phenotype in muscle biopsy samples of human UCMD patients and UCMD model mice. However, little is known about the COL6-dependent mechanism for the occurrence and progression of the deficiency. The purpose of this study was to clarify the pathological mechanism of UCMD by supplementing COL6 through cell transplantation. [Methods] To test whether COL6 supplementation has a therapeutic effect for UCMD, in vivo and in vitro experiments were conducted using four types of MSCs: (1) healthy donors derived-primary MSCs (pMSCs), (2) MSCs derived from healthy donor induced pluripotent stem cell (iMSCs), (3) COL6-knockout iMSCs (COL6KO-iMSCs), and (4) UCMD patient-derived iMSCs (UCMD-iMSCs). [Results] All four MSC types could engraft for at least 12 weeks when transplanted into the tibialis anterior muscles of immunodeficient UCMD model (Col6a1KO) mice. COL6 protein was restored by the MSC transplantation if the MSCs were not COL6-deficient (types 1 and 2). Moreover, muscle regeneration and maturation in Col6a1KO mice were promoted with the transplantation of the COL6-producing MSCs only in the region supplemented with COL6. Skeletal muscle satellite cells derived from UCMD model mice (Col6a1KO-MuSCs) co-cultured with type 1 or 2 MSCs showed improved proliferation, differentiation, and maturation, whereas those co-cultured with type 3 or 4 MSCs did not. [Conclusions] These findings indicate that COL6 supplementation improves muscle regeneration and maturation in UCMD model mice.

この論文で使われている画像

関連論文

参考文献

1. Ullrich O. Kongenitale, atonisch-sklerotische Muskeldystrophie, ein weiterer

Typus der heredodegenerativen Erkrankungen des neuromuskulären

Systems. Neur u Psych. 1930;126:31.

2. Bonnemann CG. The collagen VI-related myopathies: muscle meets its

matrix. Nat Rev Neurol. 2011;7(7):379–90. https://doi.org/10.1038/nrneurol.2

011.81.

3. Higuchi I, Shiraishi T, Hashiguchi T, Suehara M, Niiyama T, Nakagawa M,

et al. Frameshift mutation in the collagen VI gene causes Ullrich's disease.

Ann Neurol. 2001;50(2):261–5. https://doi.org/10.1002/ana.1120.

4. Higuchi I, Suehara M, Iwaki H, Nakagawa M, Arimura K, Osame M. Collagen

VI deficiency in Ullrich’s disease. Ann Neurol. 2001;49(4):544. https://doi.

org/10.1002/ana.109.

5. Camacho Vanegas O, Bertini E, Zhang RZ, Petrini S, Minosse C, Sabatelli P,

et al. Ullrich scleroatonic muscular dystrophy is caused by recessive

mutations in collagen type VI. Proc Natl Acad Sci U S A. 2001;98(13):7516–

21. https://doi.org/10.1073/pnas.121027598.

6. Lamande SR, Bateman JF. Collagen VI disorders: insights on form and function

in the extracellular matrix and beyond. Matrix Biol. 2018;71-72:348–67.

7. Gatseva A, Sin YY, Brezzo G, Van Agtmael T. Basement membrane collagens

and disease mechanisms. Essays Biochem. 2019;63(3):297–312. https://doi.

org/10.1042/EBC20180071.

8. Cescon M, Gattazzo F, Chen P, Bonaldo P. Collagen VI at a glance. J Cell Sci.

2015;128(19):3525–31. https://doi.org/10.1242/jcs.169748.

9. Fitzgerald J, Holden P, Hansen U. The expanded collagen VI family: new

chains and new questions. Connect Tissue Res. 2013;54(6):345–50. https://

doi.org/10.3109/03008207.2013.822865.

10. Sabatelli P, Bonaldo P, Lattanzi G, Braghetta P, Bergamin N, Capanni C, et al.

Collagen VI deficiency affects the organization of fibronectin in the

extracellular matrix of cultured fibroblasts. Matrix Biol. 2001;20(7):475–86.

https://doi.org/10.1016/S0945-053X(01)00160-3.

11. Kirschner J, Hausser I, Zou Y, Schreiber G, Christen HJ, Brown SC, et al.

Ullrich congenital muscular dystrophy: connective tissue abnormalities in

the skin support overlap with Ehlers-Danlos syndromes. Am J Med Genet A.

2005;132A(3):296–301. https://doi.org/10.1002/ajmg.a.30443.

12. Minamitani T, Ikuta T, Saito Y, Takebe G, Sato M, Sawa H, et al. Modulation

of collagen fibrillogenesis by tenascin-X and type VI collagen. Exp Cell Res.

2004;298(1):305–15. https://doi.org/10.1016/j.yexcr.2004.04.030.

13. Somasundaram R, Schuppan D. Type I, II, III, IV, V, and VI collagens serve as

extracellular ligands for the isoforms of platelet-derived growth factor (AA,

BB, and AB). J Biol Chem. 1996;271(43):26884–91. https://doi.org/10.1074/

jbc.271.43.26884.

14. Somasundaram R, Ruehl M, Schaefer B, Schmid M, Ackermann R, Riecken

EO, et al. Interstitial collagens I, III, and VI sequester and modulate the

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Takenaka-Ninagawa et al. Stem Cell Research & Therapy

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

(2021) 12:446

multifunctional cytokine oncostatin M. J Biol Chem. 2002;277(5):3242–6.

https://doi.org/10.1074/jbc.M110011200.

Leitinger B, Hohenester E. Mammalian collagen receptors. Matrix Biol. 2007;

26(3):146–55. https://doi.org/10.1016/j.matbio.2006.10.007.

Pfaff M, Aumailley M, Specks U, Knolle J, Zerwes HG, Timpl R. Integrin and

Arg-Gly-Asp dependence of cell adhesion to the native and unfolded triple

helix of collagen type VI. Exp Cell Res. 1993;206(1):167–76. https://doi.org/1

0.1006/excr.1993.1134.

Doane KJ, Yang G, Birk DE. Corneal cell-matrix interactions: type VI collagen

promotes adhesion and spreading of corneal fibroblasts. Exp Cell Res. 1992;

200(2):490–9. https://doi.org/10.1016/0014-4827(92)90200-R.

Kielty CM, Lees M, Shuttleworth CA, Woolley D. Catabolism of intact type VI

collagen microfibrils: susceptibility to degradation by serine proteinases.

Biochem Biophys Res Commun. 1993;191(3):1230–6. https://doi.org/10.1006/

bbrc.1993.1349.

Freise C, Erben U, Muche M, Farndale R, Zeitz M, Somasundaram R, et al.

The alpha 2 chain of collagen type VI sequesters latent proforms of matrixmetalloproteinases and modulates their activation and activity. Matrix Biol.

2009;28(8):480–9. https://doi.org/10.1016/j.matbio.2009.08.001.

Nanda A, Carson-Walter EB, Seaman S, Barber TD, Stampfl J, Singh S, et al.

TEM8 interacts with the cleaved C5 domain of collagen alpha 3(VI). Cancer

Res. 2004;64(3):817–20. https://doi.org/10.1158/0008-5472.CAN-03-2408.

Doane KJ, Howell SJ, Birk DE. Identification and functional characterization

of two type VI collagen receptors, alpha 3 beta 1 integrin and NG2, during

avian corneal stromal development. Invest Ophthalmol Vis Sci. 1998;39(2):

263–75.

Tulla M, Pentikainen OT, Viitasalo T, Kapyla J, Impola U, Nykvist P, et al.

Selective binding of collagen subtypes by integrin alpha 1I, alpha 2I, and

alpha 10I domains. J Biol Chem. 2001;276(51):48206–12. https://doi.org/10.1

074/jbc.M104058200.

Loeser RF. Growth factor regulation of chondrocyte integrins. Differential effects of

insulin-like growth factor 1 and transforming growth factor beta on alpha 1 beta 1

integrin expression and chondrocyte adhesion to type VI collagen. Arthritis Rheum.

1997;40(2):270–6. https://doi.org/10.1002/art.1780400211.

Burgi J, Kunz B, Abrami L, Deuquet J, Piersigilli A, Scholl-Burgi S, et al.

CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in

hyaline fibromatosis syndrome. Nat Commun. 2017;8(1):15861. https://doi.

org/10.1038/ncomms15861.

Merlini L, Angelin A, Tiepolo T, Braghetta P, Sabatelli P, Zamparelli A, et al.

Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in

patients with collagen VI myopathies. Proc Natl Acad Sci U S A. 2008;

105(13):5225–9. https://doi.org/10.1073/pnas.0800962105.

Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L, et al.

Mitochondrial dysfunction and apoptosis in myopathic mice with collagen

VI deficiency. Nat Genet. 2003;35(4):367–71. https://doi.org/10.1038/ng1270.

Telfer WR, Busta AS, Bonnemann CG, Feldman EL, Dowling JJ. Zebrafish

models of collagen VI-related myopathies. Hum Mol Genet. 2010;19(12):

2433–44. https://doi.org/10.1093/hmg/ddq126.

Zulian A, Rizzo E, Schiavone M, Palma E, Tagliavini F, Blaauw B, et al.

NIM811, a cyclophilin inhibitor without immunosuppressive activity, is

beneficial in collagen VI congenital muscular dystrophy models. Hum Mol

Genet. 2014;23(20):5353–63. https://doi.org/10.1093/hmg/ddu254.

Tiepolo T, Angelin A, Palma E, Sabatelli P, Merlini L, Nicolosi L, et al. The

cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle

apoptosis and ultrastructural defects in Col6a1-/- myopathic mice. Br J Pharmacol.

2009;157(6):1045–52. https://doi.org/10.1111/j.1476-5381.2009.00316.x.

Bernardi P, Bonaldo P. Mitochondrial dysfunction and defective autophagy in

the pathogenesis of collagen VI muscular dystrophies. Cold Spring Harb

Perspect Biol. 2013;5(5):a011387. https://doi.org/10.1101/cshperspect.a011387.

Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, et al.

Autophagy is defective in collagen VI muscular dystrophies, and its

reactivation rescues myofiber degeneration. Nat Med. 2010;16(11):1313–20.

https://doi.org/10.1038/nm.2247.

Castagnaro S, Pellegrini C, Pellegrini M, Chrisam M, Sabatelli P, Toni S, et al.

Autophagy activation in COL6 myopathic patients by a low-protein-diet

pilot trial. Autophagy. 2016;12(12):2484–95. https://doi.org/10.1080/1554862

7.2016.1231279.

Chrisam M, Pirozzi M, Castagnaro S, Blaauw B, Polishchuck R, Cecconi F,

et al. Reactivation of autophagy by spermidine ameliorates the myopathic

defects of collagen VI-null mice. Autophagy. 2015;11(12):2142–52. https://

doi.org/10.1080/15548627.2015.1108508.

Page 17 of 18

34. Alexeev V, Arita M, Donahue A, Bonaldo P, Chu ML, Igoucheva O. Human

adipose-derived stem cell transplantation as a potential therapy for collagen

VI-related congenital muscular dystrophy. Stem Cell Res Ther. 2014;5(1):21.

https://doi.org/10.1186/scrt411.

35. Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, et al.

Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat

Commun. 2013;4(1):1964. https://doi.org/10.1038/ncomms2964.

36. Higuchi I, Horikiri T, Niiyama T, Suehara M, Shiraishi T, Hu J, et al.

Pathological characteristics of skeletal muscle in Ullrich’s disease with

collagen VI deficiency. Neuromuscul Disord. 2003;13(4):310–6. https://doi.

org/10.1016/S0960-8966(02)00282-1.

37. Petrini S, D'Amico A, Sale P, Lucarini L, Sabatelli P, Tessa A, et al. Ullrich

myopathy phenotype with secondary ColVI defect identified by confocal

imaging and electron microscopy analysis. Neuromuscul Disord. 2007;17(8):

587–96. https://doi.org/10.1016/j.nmd.2007.04.010.

38. Yonekawa T, Nishino I. Ullrich congenital muscular dystrophy:

clinicopathological features, natural history and pathomechanism(s). J

Neurol Neurosurg Psychiatry. 2015;86(3):280–7. https://doi.org/10.1136/

jnnp-2013-307052.

39. Okada M, Kawahara G, Noguchi S, Sugie K, Murayama K, Nonaka I, et al.

Primary collagen VI deficiency is the second most common congenital

muscular dystrophy in Japan. Neurology. 2007;69(10):1035–42. https://doi.

org/10.1212/01.wnl.0000271387.10404.4e.

40. Noguchi S, Ogawa M, Malicdan MC, Nonaka I, Nishino I. Muscle weakness

and fibrosis due to cell autonomous and non-cell autonomous events in

collagen VI deficient congenital muscular dystrophy. EBioMedicine. 2017;15:

193–202. https://doi.org/10.1016/j.ebiom.2016.12.011.

41. Pan TC, Zhang RZ, Arita M, Bogdanovich S, Adams SM, Gara SK, et al. A

mouse model for dominant collagen VI disorders: heterozygous deletion of

Col6a3 Exon 16. J Biol Chem. 2014;289(15):10293–307. https://doi.org/10.1

074/jbc.M114.549311.

42. Wosczyna MN, Konishi CT, Perez Carbajal EE, Wang TT, Walsh RA, Gan Q,

et al. Mesenchymal stromal cells are required for regeneration and

homeostatic maintenance of skeletal muscle. Cell Rep. 2019;27(7):2029–35

e5. https://doi.org/10.1016/j.celrep.2019.04.074.

43. Roberts EW, Deonarine A, Jones JO, Denton AE, Feig C, Lyons SK, et al.

Depletion of stromal cells expressing fibroblast activation protein-alpha

from skeletal muscle and bone marrow results in cachexia and anemia. J

Exp Med. 2013;210(6):1137–51. https://doi.org/10.1084/jem.20122344.

44. Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K. Mesenchymal

progenitors distinct from satellite cells contribute to ectopic fat cell

formation in skeletal muscle. Nat Cell Biol. 2010;12(2):143–52. https://doi.

org/10.1038/ncb2014.

45. Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T, Segawa M, et al. Fibrosis

and adipogenesis originate from a common mesenchymal progenitor in

skeletal muscle. J Cell Sci. 2011;124(Pt 21):3654–64. https://doi.org/10.1242/

jcs.086629.

46. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al.

Induction of pluripotent stem cells from adult human fibroblasts by defined

factors. Cell. 2007;131(5):861–72. https://doi.org/10.1016/j.cell.2007.11.019.

47. Fukuta M, Nakai Y, Kirino K, Nakagawa M, Sekiguchi K, Nagata S, et al.

Derivation of mesenchymal stromal cells from pluripotent stem cells

through a neural crest lineage using small molecule compounds with

defined media. PLoS One. 2014;9(12):e112291. https://doi.org/10.1371/journa

l.pone.0112291.

48. Wataya T, Ando S, Muguruma K, Ikeda H, Watanabe K, Eiraku M, et al.

Minimization of exogenous signals in ES cell culture induces rostral

hypothalamic differentiation. Proc Natl Acad Sci U S A. 2008;105(33):11796–

801. https://doi.org/10.1073/pnas.0803078105.

49. Uezumi A, Nakatani M, Ikemoto-Uezumi M, Yamamoto N, Morita M,

Yamaguchi A, et al. Cell-surface protein profiling identifies distinctive

markers of progenitor cells in human skeletal muscle. Stem Cell Reports.

2016;7(2):263–78. https://doi.org/10.1016/j.stemcr.2016.07.004.

50. Torihashi S, Ho M, Kawakubo Y, Komatsu K, Nagai M, Hirayama Y, et al. Acute

and temporal expression of tumor necrosis factor (TNF)-alpha-stimulated gene

6 product, TSG6, in mesenchymal stem cells creates microenvironments

required for their successful transplantation into muscle tissue. J Biol Chem.

2015;290(37):22771–81. https://doi.org/10.1074/jbc.M114.629774.

51. Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for

medical statistics. Bone Marrow Transplant. 2013;48(3):452–8. https://doi.

org/10.1038/bmt.2012.244.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Takenaka-Ninagawa et al. Stem Cell Research & Therapy

(2021) 12:446

52. Kim J, Kang JW, Park JH, Choi Y, Choi KS, Park KD, et al. Biological

characterization of long-term cultured human mesenchymal stem cells. Arch

Pharm Res. 2009;32(1):117–26. https://doi.org/10.1007/s12272-009-1125-1.

53. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of

human mesenchymal stem cells (MSC): a comparison of adult and neonatal

tissue-derived MSC. Cell Commun Signal. 2011;9(1):12. https://doi.org/10.11

86/1478-811X-9-12.

54. Kim M, Kim C, Choi YS, Park C, Suh Y. Age-related alterations in

mesenchymal stem cells related to shift in differentiation from osteogenic

to adipogenic potential: implication to age-associated bone diseases and

defects. Mech Ageing Dev. 2012;133(5):215–25. https://doi.org/10.1016/j.ma

d.2012.03.014.

55. Xu H, Wang B, Ono M, Kagita A, Fujii K, Sasakawa N, et al. Targeted

disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced

immune compatibility. Cell Stem Cell. 2019;24(4):566–78 e7. https://doi.org/1

0.1016/j.stem.2019.02.005.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Page 18 of 18

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る