リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Interaction between Bordetella bronchiseptica and Acanthamoeba as a transient host in the natural environment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Interaction between Bordetella bronchiseptica and Acanthamoeba as a transient host in the natural environment

Nugraha, Dendi Krisna 大阪大学

2022.03.24

概要

Bordetella bronchiseptica (Bb) is a Gram-negative bacterium, which causes respiratory diseases in pigs, dogs, cats, and occasionally humans. In addition to infecting hosts, Bb is considered to survive in the environment persistently, which may provide a source of infection; however, the environmental lifestyle of Bb is poorly understood. In general, environmental bacteria survive in a dormant state or proliferate with or without interacting with other living organisms, such as protozoa.

In this study, I explored the possible interaction between Bb and Acanthamoeba castellanii (Ac) as a representative of environmental protozoa. Unlike bacteria that serve as amoeba food sources, Bb phagocytosed by the amoeba resisted digestion and escaped to extracellular milieu through contractile vacuoles (CVs), intracellular compartments involved in osmoregulation. Furthermore, Bb survived and proliferated for at least 28 days of co-culture with the amoeba. The Bordetellae harbors the Bordetella virulence gene (BvgAS) two-component system, which controls the reversible phenotypic conversions between an avirulent phenotype known as Bvg− phase and the virulent Bvg+ phase. A mutant of Bb locked in the Bvg− phase but not in the Bvg+ phase was found to survive and proliferate in the co-culture with the amoeba. Microscopic analyses revealed that the Bvg+ phase-locked mutant was more efficiently internalized and transported to the intracellular digestion pathway than the Bvg− phase-locked mutant. After seven days of co-culture, the dead cells of the Bvg+ phase-locked mutant were accumulated in giant food vacuoles (GFVs), which were previously reported as a specific compartment in the amoeba phago- endosomal pathway. These data suggest that Bb resists predation by Ac in a Bvg phase-dependent manner. By screening variants of the Bvg+ phase-locked mutant in which Bvg+-specific genes were deleted, I found that deletion mutants deficient in bacterial adhesion molecules, FhaB and fimbriae, survived in the co-culture with the amoeba similar to the WT strain, indicating that the adhesion molecules are targeted for predation by the amoeba.

The present study indicates that Bb survives from Ac predation by concealing FhaB and fimbriae, which are major bacterial adhesins contributing to the establishment of bacterial colonization in infection to mammalian hosts. Ac could be a transient host in the natural environment, which supports the propagation of the bacteria. This study also provides a new perspective for understanding the ecology of Bb during the lifecycle outside the mammalian hosts.

参考文献

1. R. A Goodnow, Biology of Bordetella bronchiseptica. Microbiol. Rev. 44, 722–738 (1980).

2. D. A. Bemis, Bordetella and mycoplasma respiratory infections in dogs and cats. Vet. Clin. North Am. - Small Anim. Pract. 22 (1992).

3. Mattoo et al., Clinical Manifestations of Respiratory Infections Due to Bordetella pertussis and Other Bordetella Subspecies. Clin. Microbiol. Rev. 18, 326–382 (2005).

4. I. Rivera, B. Linz, E. T. Harvill, Evolution and Conservation of Bordetella Intracellular Survival in Eukaryotic Host Cells. Front. Microbiol. 11 (2020).

5. Mattoo et al., Molecular Pathogenesis, Epidemiology, and Clinical Manifestations of Respiratory Infections Due to Bordetella pertussis and Other Bordetella Subspecies. Clin. Microbiol. Rev. 18, 326–382 (2005).

6. P. A. Cotter, M. H. Yuk, S. Mattoo, B. J. Akerley, J. Boschwitz, D. A. Relman, J. F. Miller, Filamentous hemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect. Immun. 66, 5921–5929 (1998).

7. E. V. Scheller, P. A. Cotter, Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential. Pathog. Dis. 73, (2015).

8. J. A. Montaraz, P. Novotny, J. Ivanyi, Identification of a 68-kilodalton protective protein antigen from Bordetella bronchiseptica. Infect. Immun. 47, 744–751 (1985).

9. H. Jungnitz, N. P. West, M. J. Walker, G. S. Chhatwal, C. A. Guzmàn, A Second Two-Component Regulatory System of Bordetella bronchiseptica Required for Bacterial Resistance to Oxidative Stress, Production of Acid Phosphatase, and In Vivo Persistence. (1998)

10. D. Jurnecka, P. Man, P. Sebo, L. Bumba, Bordetella pertussis and Bordetella bronchiseptica filamentous hemagglutinins are processed at different sites. FEBS Open Bio. 8, 1256–1266 (2018).

11. M. G. Barnes, A. A. Weiss, BrkA Protein of Bordetella pertussis Inhibits the Classical Pathway of Complement after C1 Deposition. Infect. Immun. 69, 3067 (2001).

12. S. L. Brockmeier, K. B. Register, T. Magyar, A. J. Lax, G. D. Pullinger, R. A. Kunkle, Role of the dermonecrotic toxin of Bordetella bronchiseptica in the pathogenesis of respiratory disease in swine. Infect. Immun. 70, 481–490 (2002).

13. E. Wehmann, B. Khayer, T. Magyar, Heterogeneity of Bordetella bronchiseptica adenylate cyclase (cyaA) RTX domain. Arch. Microbiol. 197, 105–112 (2015).

14. B. Arico, R. Rappuoli, Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes. J. Bacteriol. 169, 2847–2853 (1987).

15. S. Z. Hausman, J. D. Cherry, U. Heininger, C. H. W. Von König, D. L. Burns, Analysis of proteins encoded by the ptx and ptl genes of Bordetella bronchiseptica and Bordetella parapertussis. Infect. Immun. 64, 4020–4026 (1996).

16. T. L. Nicholson, S. L. Brockmeier, C. L. Loving, K. B. Register, M. E. Kehrli, S. M. Shore, The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect. Immun. 82, 1092–1103 (2014).

17. A. A. Weiss, E. L. Hewlett, G. A. Myers, S. Falkow, Tn5-induced mutations affecting virulence factors of Bordetella pertussis. Infect. Immun. 42, 33–41 (1983).

18. D. A. Relman, M. Domenighini, E. Toumanen, R. Rappuoli, S. Falkow, Filamentous hemagglutinin of Bordetella pertussis: Nucleotide sequence and crucial role in adherence. Proc. Natl. Acad. Sci. U. S. A. 86, 2637–2641 (1989).

19. D. Relman, E. Tuomanen, S. Falkow, D. T. Golenbock, K. Saukkonen, S. D. Wright, Recognition of a bacterial adhesin by an integrin: Macrophage CR3 (αMβ2, CD11b CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell. 61, 1375–1382 (1990).

20. S. M. Prasad, Y. Yin, E. Rodzinski, E. I. Tuomanen, H. R. Masure, Identification of a carbohydrate recognition domain in filamentous hemagglutinin from Bordetella pertussis. Infect. Immun. 61, 2780–2785 (1993).

21. F. D. Menozzi, C. Gantiez, C. Locht, Interaction of the Bordetella pertussis filamentous hemagglutinin with heparin. FEMS Microbiol. Lett. 78, 59–64 (1991).

22. F. R. Mooi, H. G. J. van der Heide, A. R. ter Avest, K. G. Welinder, I. Livey, B. A. M. van der Zeijst, W. Gaastra, Characterization of fimbrial subunits from Bordetella species. Microb. Pathog. 2, 473–484 (1987).

23. B. Riboli, P. Pedroni, A. Cuzzoni, G. Grandi, F. de Ferra, Expression of Bordetella pertussis fimbrial (fim) genes in Bordetella bronchiseptica: fimX is expressed at a low level and vir- regulated. Microb. Pathog. 10, 393–403 (1991).

24. S. A. Kania, S. Rajeev, E. H. Burns, T. F. Odom, S. M. Holloway, D. A. Bemis, Characterization of fimN, a new Bordetella bronchiseptica major fimbrial subunit gene. Gene. 256, 149–155 (2000).

25. J. A. Edwards, N. A. Groathouse, S. Boitano, Bordetella bronchiseptica adherence to cilia is mediated by multiple adhesin factors and blocked by surfactant protein A. Infect. Immun. 73, 3618–3626 (2005).

26. S. Mattoo, J. F. Miller, P. A. Cotter, Role of Bordetella bronchiseptica fimbriae in tracheal colonization and development of a humoral immune response. Infect. Immun. 68, 2024– 2033 (2000).

27. I. R. Henderson, J. P. Nataro, Virulence functions of autotransporter proteins. Infect. Immun.69 (2001).

28. I. G. Charles, G. Dougan, D. Pickard, S. Chatfield, M. Smith, P. Novotny, P. Morrissey, N.F. Fairweather, Molecular cloning and characterization of protective outer membrane protein P.69 from Bordetella pertussis. Proc. Natl. Acad. Sci. U. S. A. 86, 3554–3558 (1989).

29. L. J. Li, G. Dougan, P. Novotny, I. G. Charles, P.70 pertactin, an outer‐membrane protein from Bordetella parapertussis: cloning, nucleotide sequence and surface expression in Escherichia coli. Mol. Microbiol. 5, 409–417 (1991).

30. P. Emsley, I. G. Charles, N. F. Fairweather, N. W. Isaacs, Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature. 381, 90–92 (1996).

31. E. Leininger, M. Roberts, J. G. Kenimer, I. G. Charles, N. Fairweather, P. Novotny, M. J. Brennan, Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 88, 345–349 (1991).

32. P. Emsley, G. McDermott, I. G. Charles, N. F. Fairweather, N. W. Isaacs, Crystallographic characterization of pertactin, a membrane-associated protein from Bordetella pertussis. J. Mol. Biol. 235, 772–773 (1994).

33. L. Coutte, R. Antoine, H. Drobecq, C. Locht, F. Jacob-Dubuisson, Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J. 20, 5040–5048 (2001).

34. R. C. Fernandez, A. A. Weiss, Cloning and sequencing of a Bordetella pertussis serum resistance locus. Infect. Immun. 62, 4727–4738 (1994).

35. T. M. Finn, D. F. Amsbaugh, Vag8, a Bordetella pertussis Bvg-Regulated Protein. Infect. Immun. 66, 3985–3989 (1998).

36. J. Vojtova, J. Kamanova, P. Sebo, Bordetella adenylate cyclase toxin: A swift saboteur of host defense. Curr. Opin. Microbiol. 9 (2006).

37. R. Shrivastava, J. F. Miller, Virulence factor secretion and translocation by Bordetella species. Curr. Opin. Microbiol. 12, 88–93 (2009).

38. A. Raptis, L. Knipling, J. Wolff, Dissociation of catalytic and invasive activities of Bordetella pertussis adenylate cyclase. Infect. Immun. 57, 1725–1730 (1989).

39. P. A. Cotter, J. F. Miller, in Principles of Bacterial Pathogenesis (Academic Press, 2001).

40. A. Rogel, J. E. Schultz, R. M. Brownlie, J. G. Coote, R. Parton, E. Hanski, Bordetella pertussis adenylate cyclase: purification and characterization of the toxic form of the enzyme. EMBO J. 8, 2755–2760 (1989).

41. E. L. Hewlett, K. J. Kim, S. J. Lee, M. C. Gray, Adenylate cyclase toxin from Bordetella pertussis: Current concepts and problems in the study of toxin functions. Int. J. Med. Microbiol. 290, 333–335 (2000).

42. E. T. Harvill, P. A. Cotter, M. H. Yuk, J. F. Miller, Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infect. Immun. 67, 1493–1500 (1999).

43. T. Magyar, N. Chanter, A. J. Lax, J. M. Rutter, G. A. Hall, The pathogenesis of turbinate atrophy in pigs caused by Bordetella bronchiseptica. Vet. Microbiol. 18, 135–146 (1988).

44. K. Kume, T. Nakai, Y. Samejima, C. Sugimoto, Properties of dermonecrotic toxin prepared from sonic extracts of Bordetella bronchiseptica. Infect. Immun. 52, 370–377 (1986).

45. H. Nagano, T. Nakai, Y. Horiguchi, K. Kume, Isolation and characterization of mutant strains of Bordetella bronchiseptica lacking dermonecrotic toxin-producing ability. J. Clin. Microbiol. 26, 1983–1987 (1988).

46. K. E. Walker, A. A. Weiss, Characterization of the dermonecrotic toxin in members of the Genus Bordetella. Infect. Immun. 62, 3817–3828 (1994).

47. G. D. Pullinger, T. E. Adams, P. B. Mullan, T. I. Garrod, A. J. Lax, Cloning, expression, and molecular characterization of the dermonecrotic toxin gene of Bordetella spp. Infect. Immun. 64, 4163–4171 (1996).

48. G. Schmidt, U. M. Goehring, J. Schirmer, M. Lerm, K. Aktories, Identification of the C- terminal part of Bordetella dermonecrotic toxin as a transglutaminase for Rho GTPases. J. Biol. Chem. 274, 31875–31881 (1999).

49. S. Teruya, Y. Hiramatsu, K. Nakamura, A. Fukui-Miyazaki, K. Tsukamoto, N. Shinoda, D.Motooka, S. Nakamura, K. Ishigaki, N. Shinzawa, T. Nishida, F. Sugihara, Y. Maeda, Y. Horiguchi, Bordetella dermonecrotic toxin is a neurotropic virulence factor that uses Cav3.1 as the cell surface receptor. MBio. 11 (2020).

50. Y. Horiguchi, N. Inoue, M. Masuda, T. Kashimoto, J. Katahira, N. Sugimoto, M. Matsuda, Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gin-63 of the GTP-binding protein Rho. Proc. Natl. Acad. Sci. U. S. A. 94, 11623–11626 (1997).

51. T. Kashimoto, J. Katahira, W. R. Cornejo, M. Masuda, A. Fukuoh, T. Matsuzawa, T. Ohnishi, Y. Horiguchi, Identification of functional domains of Bordetella dermonecrotizing toxin. Infect. Immun. 67, 3727–3732 (1999).

52. M. Lerm, G. Schmidt, U. M. Goehring, J. Schirmer, K. Aktories, Identification of the region of Rho involved in substrate recognition by Escherichia coli cytotoxic necrotizing factor 1 (CNF1). J. Biol. Chem. 274, 28999–29004 (1999).

53. A. A. Weiss, S. Falkow, Genetic analysis of phase change in Bordetella pertussis. Infect. Immun. 43, 263–269 (1984).

54. G. M. De Tejada, J. F. Miller, P. A. Cotter, Comparative analysis of the virulence control systems of Bordetella pertussis and Bordetella bronchiseptica. Mol. Microbiol. 22, 895– 908 (1996).

55. P. A. Cotter, A. M. Jones, Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol. 11, 367–373 (2003).

56. J. A. Melvin, E. V. Scheller, J. F. Miller, P. A. Cotter, Bordetella pertussis pathogenesis: current and future challenges. Nat. Rev. Microbiol. 12, 274–288 (2014).

57. P. A. Cotter, J. F. Miller, A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg- regulated antigens. Mol. Microbiol. 24, 671–685 (1997).

58. P. A. Cotter, J. F. Miller, BvgAS-Mediated Signal-Transduction: Analysis of Phase-locked Regulatory Mutants of Bordetella bronchiseptica in a Rabbit Model. Infect. Immun. 62, 3381–3390 (1994).

59. E. Uribe-Querol, C. Rosales, Phagocytosis: Our Current Understanding of a Universal Biological Process. Front. Immunol. 11 (2020).

60. A. Banemann, R. Gross, Phase variation affects long-term survival of Bordetella bronchiseptica in professional phagocytes. Infect. Immun. 65, 3469–3473 (1997).

61. C. A. Guzmàn, M. Rohde, K. N. Timmis, Mechanisms involved in uptake of Bordetella bronchiseptica by mouse dendritic cells. Infect. Immun. 62, 5538–5544 (1994).

62. B. Schneider, R. O. Y. Gross, A. Haas, Phagosome Acidification Has Opposite Effects on Intracellular Survival of Bordetella pertussis and B. bronchiseptica. 68, 7039–7048 (2000).

63. C. B. Forde, R. Parton, J. G. Coote, Bioluminescence as a reporter of intracellular survival of Bordetella bronchiseptica in murine phagocytes. Infect. Immun. 66, 3198–3207 (1998).

64. C. A. Guzmàn, M. Rohde, M. Bock, K. N. Timmis, Invasion and intracellular survival ofBordetella bronchiseptica in mouse dendritic cells. Infect. Immun. 62, 5528–5537 (1994).

65. K. Zimna, E. Medina, H. Jungnitz, C. A. Guzmàn, Role played by the response regulator Ris in Bordetella bronchiseptica resistance to macrophage killing. FEMS Microbiol. Lett. 201, 177–180 (2001).

66. G. S. Chhatwal, M. J. Walker, H. Yan, K. N. Timmis, C. A. Guzmàn, Temperature dependent expression of an acid phosphatase by Bordetella bronchiseptica: Role in intracellular survival. Microb. Pathog. 22, 257–264 (1997).

67. I. H. Soumana, B. Linz, E. T. Harvill, Environmental origin of the genus Bordetella. Front. Microbiol. 8, 1–10 (2017).

68. J. M. Lynch, E. Mitscherlich , E. H. Marth, Microbial Survival in the Environment, Bacteria and Rickettsiae Important in Human and Animal Health. Q. Rev. Biol. 60, 503–503 (1985).

69. J. F. Porter, R. Parton, A. C. Wardlaw, Growth and survival of Bordetella bronchiseptica in natural waters and in buffered saline without added nutrients. Appl. Environ. Microbiol. 57, 1202–1206 (1991).

70. J. F. Porter, A. C. Wardlaw, Long-term survival of Bordetella bronchiseptica in lakewater and in buffered saline without added nutrients. FEMS Microbiol. Lett. 110, 33–36 (1993).

71. N. A. Khan, Acanthamoeba : Biology and Pathogenesis (Caister Academic Press, 54(2015).

72. F. Marciano-Cabral, G. Cabral, Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16, 273–307 (2003).

73. R. Siddiqui, N. A. Khan, Biology and pathogenesis of Acanthamoeba. Parasites and Vectors. 5, 6 (2012).

74. H. H. Kong, Molecular Phylogeny of Acanthamoeba. Korean J. Parasitol. 47 (2009).

75. J. R. Cope, J. S. Yoder, G. S. Visvesvara, in Infectious Diseases (Elsevier, 2017).

76. S. Bouyer, M. H. Rodier, A. Guillot, Y. Héchard, Acanthamoeba castellanii: Proteins involved in actin dynamics, glycolysis, and proteolysis are regulated during encystation. Exp. Parasitol. 123, 90–94 (2009).

77. A. de Obeso Fernandez del Valle, Protein secretion and encystation in Acanthamoeba, 258 (2019).

78. T. M. Preston, H. Richards, R. S. Wotton, Locomotion and feeding of Acanthamoeba at the water air interface of ponds. FEMS Microbiol. Lett. 194, 143–147 (2001).

79. P. G. Allen, E. A. Dawidowicz, Phagocytosis in Acanthamoeba: I. A mannose receptor is responsible for the binding and phagocytosis of yeast. J. Cell. Physiol. 145, 508–513 (1990).

80. J. Iqbal, R. Siddiqui, N. A. Khan, Acanthamoeba can propagate on thermophilic Sulfolobus spp. Parasitol. Res. 112, 879–881 (2013).

81. J. E. Strassmann, L. Shu, Ancient bacteria–amoeba relationships and pathogenic animal bacteria. PLoS Biol. 15, 1–8 (2017).

82. J. L. Sinclair, J. F. McClellan, D. C. Coleman, Nitrogen Mineralization by Acanthamoeba polyphaga in Grazed Pseudomonas paucimobilis Populations. Appl. Environ. Microbiol. 42, 667–671 (1981).

83. N. A. Khan, J. Iqbal, R. Siddiqui, Taste and smell in Acanthamoeba feeding. Acta Protozool.53 (2014).

84. F. L. Schuster, M. Levandowsky, Chemosensory responses of Acanthamoeba castellanii: Visual analysis of random movement and responses to chemical signals. J. Eukaryot. Microbiol. 43, 150–158 (1996).

85. B. Bowers, Comparison of pinocytosis and phagocytosis in Acanthamoeba castellanii. Exp. Cell Res. 110, 409–417 (1977).

86. B. Astorga, J. Lorenzo-Morales, C. M. Martín-Navarro, V. Alarcõn, J. Moreno, A. C. González, E. Navarrete, J. E. Piñero, B. Valladares, Acanthamoeba belonging to T3, T4, and T11: Genotypes isolated from air-conditioning units in Santiago, Chile. J. Eukaryot. Microbiol. 58, 542–544 (2011).

87. R. L. Tyndall, E. S. Lehman, E. K. Bowman, D. K. Milton, J. M. Barbaree, Home Humidifiers as a Potential Source of Exposure to Microbial Pathogens, Endotoxins, and Allergens. Indoor Air. 5, 171–178 (1995).

88. H. R. Bagheri, R. Shafiei, F. Shafiei, S. A. Sajjadi, Isolation of Acanthamoeba spp. from drinking waters in several Hospitals of Iran. Iran. J. Parasitol. 5, 19–25 (2010).

89. V. J. Maschio, F. Chies, A. M. Carlesso, A. Carvalho, S. P. Rosa, S. T. Van Der Sand, M.B. Rott, Acanthamoeba T4, T5 and T11 Isolated From Mineral Water Bottles in Southern Brazil. Curr. Microbiol. 70, 6–9 (2015).

90. T. A. Nerad, T. K. Sawyer, E. J. Lewis, S. M. Mclaughlin, Acanthamoeba pearcei N. Sp. (Protozoa: Amoebida) from Sewage Contaminated Sediments. J. Eukaryot. Microbiol. 42, 702–705 (1995).

91. M. Rezaeian, M. Niyyati, S. Farnia, A. Motevalli Haghi, Isolation of Acanthamoeba spp. from different environmental sources. Iran. J. Parasitol. 3, 44–47 (2008).

92. J. Lorenzo-Morales, J. F. Lindo, E. Martinez, D. Calder, E. Figueruelo, B. Valladares, A. Ortega-Rivas, Pathogenic Acanthamoeba strains from water sources in Jamaica, West Indies. Ann. Trop. Med. Parasitol. 99, 751–758 (2005).

93. N. A. Khan, Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 30 (2006), pp. 564–595.

94. P. H. H. Weekers, C. Van Der Drift, Nitrogen Metabolizing Enzyme Activities In the Free‐ Living Soil Amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga and Hartmannella vermiformis. J. Eukaryot. Microbiol. 40, 251–254 (1993).

95. V. E. Paquet, S. J. Charette, Amoeba-resisting bacteria found in multilamellar bodies secreted by Dictyostelium discoideum: Social amoebae can also package bacteria. FEMS Microbiol. Ecol. 92 (2016).

96. M. Horn, M. Wagner, in Journal of Eukaryotic Microbiology. 51, 509-514 (2004).

97. Y. Shi, D. C. Queller, Y. Tian, S. Zhang, Q. Yan, Z. He, Z. He, C. Wu, C. Wang, L. Shu, S.-J. Liu, Ed., The Ecology and Evolution of Amoeba-Bacterium Interactions. Appl. Environ. Microbiol. 87 (2021).

98. N. A. Khan, R. Siddiqui, Predator vs aliens: bacteria interactions with Acanthamoeba. Parasitology. 141, 869–874 (2014).

99. R. Rønn, A. E. McCaig, B. S. Griffiths, J. I. Prosser, Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl. Environ. Microbiol. 68, 6094–6105 (2002).

100. S. Adiba, C. Nizak, M. van Baalen, E. Denamur, F. Depaulis, From grazing resistance to pathogenesis: The coincidental evolution of virulence factors. PLoS One. 5 (2010).

101. C. Matz, S. Kjelleberg, Off the hook - How bacteria survive protozoan grazing. Trends Microbiol. 13, 302–307 (2005).

102. R. Siddiqui, N. A. Khan, War of the microbial worlds: Who is the beneficiary in Acanthamoeba-bacterial interactions? Exp. Parasitol. 130 (2012).

103. A. M. Denoncourt, V. E. Paquet, S. J. Charette, Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria. Front. Microbiol. 5 (2014).

104. G. Greub, D. Raoult, Microorganisms Resistant to Free-Living Amoebae. Clin. Microbiol. Rev. 17 (2004).

105. W. Khunkitti, D. Lloyd, J. R. Furr, A. D. Russell, Acanthamoeba castellanii: Growth, encystment, excystment and biocide susceptibility. J. Infect. 36, 43–48 (1998).

106. J. A. Benavides-Montaño, V. Vadyvaloo, Yersinia pestis Resists Predation by Acanthamoeba castellanii and Exhibits Prolonged Intracellular Survival. Appl. Environ. Microbiol. 83, 1–4 (2017).

107. B. S. Fields, R. F. Benson, R. E. Besser, Legionella and legionnaires’ disease: 25 Years of investigation. Clin. Microbiol. Rev. 15 (2002).

108. A. Magnet, R. H. S. Peralta, T. S. Gomes, F. Izquierdo, C. Fernandez-Vadillo, A. L. Galvan,M. J. Pozuelo, C. Pelaz, S. Fenoy, C. Del Águila, Vectorial role of Acanthamoeba in Legionella propagation in water for human use. Sci. Total Environ. 505, 889–895 (2015).

109. M. V. Storey, J. Winiecka-Krusnell, N. J. Ashbolt, T. A. Stenström, The efficacy of heat and chlorine treatment against thermotolerant Acanthamoebae and Legionellae. Scand. J. Infect. Dis. 36, 656–662 (2004).

110. M. Steinert, U. Hentschel, J. Hacker, Legionella pneumophila: An aquatic microbe goes astray. FEMS Microbiol. Rev. 26 (2002).

111. T. J. Rowbotham, Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J. Clin. Pathol. 33, 1179–1183 (1980).

112. D. L. Taylor-Mulneix, L. Bendor, B. Linz, I. Rivera, V. E. Ryman, K. K. Dewan, S. M. Wagner, E. F. Wilson, L. J. Hilburger, L. E. Cuff, C. M. West, E. T. Harvill, Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biol. 15, 1–28 (2017).

113. H. Abe, S. Kamitani, A. Fukui-Miyazaki, N. Shinzawa, K. Nakamura, Y. Horiguchi, Detection of genes expressed in Bordetella bronchiseptica colonizing rat trachea by in vivo expressed-tag immunoprecipitation method. Microbiol. Immunol. 59, 249–261 (2015).

114. S. Nishikawa, N. Shinzawa, K. Nakamura, K. Ishigaki, H. Abe, Y. Horiguchi, The Bvg- repressed gene brtA, encoding biofilm-associated surface adhesin, is expressed during host infection by Bordetella bronchiseptica. Microbiol. Immunol. 60, 93–105 (2016).

115. O. Edelheit, A. Hanukoglu, I. Hanukoglu, Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure- function studies. BMC Biotechnol. 9, 1–8 (2009).

116. K. Tsukamoto, N. Shinzawa, A. Kawai, M. Suzuki, H. Kidoya, N. Takakura, H. Yamaguchi,T. Kameyama, H. Inagaki, H. Kurahashi, Y. Horiguchi, Y. Doi, The Bartonella autotransporter BafA activates the host VEGF pathway to drive angiogenesis. Nat. Commun. 11, 3571 (2020).

117. Y. Aqeel, R. Siddiqui, H. Iftikhar, N. A. Khan, The effect of different environmental conditions on the encystation of Acanthamoeba castellanii belonging to the T4 genotype. Exp. Parasitol. 135, 30–35 (2013).

118. Y. Hiramatsu, T. Nishida, D. K. Nugraha, F. Sugihara, Y. Horiguchi, Melanin Produced by Bordetella parapertussis Confers a Survival Advantage to the Bacterium during Host Infection. mSphere (2021).

119. T. van Opijnen, D. W. Lazinski, A. Camilli, Genome-Wide Fitness and Genetic Interactions Determined by Tn-seq, a High-Throughput Massively Parallel Sequencing Method for Microorganisms. Curr. Protoc. Microbiol. 36 (2015).

120. M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26, 139– 140 (2009).

121. T. L. Nicholson, Construction and validation of a first-generation Bordetella bronchiseptica long-oligonucleotide microarray by transcriptional profiling the Bvg regulon. BMC Genomics. 8, 220 (2007).

122. K. Okada, Y. Ogura, T. Hayashi, A. Abe, A. Kuwae, Y. Horiguchi, H. Abe, Complete genome sequence of Bordetella bronchiseptica S798, an isolate from a pig with atrophic rhinitis. Genome Announc. 2 (2014).

123. M. E. Kovach, P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. Roop, K. M. Peterson, Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. 166, 1–2 (2015).

124. M. A. Laskowski-Arce, K. Orth, Acanthamoeba castellanii promotes the survival of Vibrio parahaemolyticus. Appl. Environ. Microbiol. 74, 7183–7188 (2008).

125. G. Sandström, A. Saeed, H. Abd, Acanthamoeba polyphaga is a possible host for Vibrio cholerae in aquatic environments. Exp. Parasitol. 126, 65–68 (2010).

126. X. T. Bui, A. Winding, K. Qvortrup, A. Wolff, D. D. Bang, C. Creuzenet, Survival of Campylobacter jejuni in co-culture with Acanthamoeba castellanii: Role of amoeba- mediated depletion of dissolved oxygen. Environ. Microbiol. 14, 2034–2047 (2012).

127. J. Winiecka-Krusnell, K. Wreiber, A. Von Euler, L. Engstrand, E. Linder, Free-living amoebae promote growth and survival of Helicobacter pylori. Scand. J. Infect. Dis. 34, 253–256 (2002).

128. W. D. Dolphin, Effect of Glucose on Glycine Requirement of Acanthamoeba castellanii. J. Protozool. 23, 455–457 (1976).

129. E. Stubblefield, G. C. Mueller, Effects of Sodium Chloride Concentration on Growth, Biochemical Composition, and Metabolism of HeLa Cells. Cancer Res. 20, 1646–1655 (1960).

130. L. B. Pinheiro, M. D. Gibbs, G. Vesey, J. J. Smith, P. L. Bergquist, Fluorescent reference strains of bacteria by chromosomal integration of a modified green fluorescent protein gene. Appl. Microbiol. Biotechnol. 77, 1287–1295 (2008).

131. C. Van Der Henst, T. Scrignari, C. Maclachlan, M. Blokesch, An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii. ISME J. 10, 897–910 (2016).

132. A. Sharma, A. Puhar, Gentamicin Protection Assay to Determine the Number of Intracellular Bacteria during Infection of Human TC7 Intestinal Epithelial Cells by Shigella flexneri. Bio-Protocol. 9 (2019).

133. A. Akya, A. Pointon, C. Thomas, Viability of Listeria monocytogenes in co-culture with Acanthamoeba spp. FEMS Microbiol. Ecol. 70, 20–29 (2009).

134. A. Sanchez-Hidalgo, A. Obregón-Henao, W. H. Wheat, M. Jackson, M. Gonzalez-Juarrero,Mycobacterium bovis hosted by free-living-amoebae permits their long-term persistence survival outside of host mammalian cells and remain capable of transmitting disease to mice. Environ. Microbiol. 19, 4010–4021 (2017).

135. M. Steinert, K. Birkness, E. White, B. Fields, F. Quinn, Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl. Environ. Microbiol. 64, 2256–2261 (1998).

136. L. Y. Gao, Y. A. Kwaik, The mechanism of killing and exiting the protozoan host Acanthamoeba polyphaga by Legionella pneumophila. Environ. Microbiol. 2, 79–90 (2000).

137. C. Van der Henst, A. S. Vanhove, N. C. Drebes Dörr, S. Stutzmann, C. Stoudmann, S. Clerc,T. Scrignari, C. Maclachlan, G. Knott, M. Blokesch, Molecular insights into Vibrio cholerae’s intra-amoebal host-pathogen interactions. Nat. Commun. 9 (2018).

138. R. A. Pal, The osmoregulatory system of the amoeba, Acanthamoeba castellanii. J. Exp. Biol. 57, 55–76 (1972).

139. G. S. Visvesvara, H. Moura, F. L. Schuster, Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 50 (2007).

140. T. L. Nicholson, S. L. Brockmeier, C. L. Loving, K. B. Register, M. E. Kehrli, S. E. Stibitz,S. M. Shore, Phenotypic modulation of the virulent Bvg phase is not required for pathogenesis and transmission of Bordetella bronchiseptica in swine. Infect. Immun. 80, 1025–1036 (2012).

141. J. Olofsson, D. Axelsson-Olsson, L. Brudin, B. Olsen, P. Ellström, Campylobacter jejuni actively invades the amoeba Acanthamoeba polyphaga and survives within non digestive vacuoles. PLoS One. 8 (2013).

142. C. A. Cummings, H. J. Bootsma, D. A. Relman, J. F. Miller, Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J. Bacteriol. 188, 1775–1785 (2006).

143. T. van Opijnen, A. Camilli, Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat. Rev. Microbiol. 11, 435–442 (2013).

144. G. E. Vergara, Mechanisms of intracellular resistance and the role of the escape of Vibrio cholerae from protist hosts Thesis / Dissertation Sheet (2019).

145. S. L. Drennan, A. Lama, R. C. Johnson, E. D. Cambronne, G. L. Rubenstein, Identification of Conserved ABC Importers Necessary for Intracellular Survival of Legionella pneumophila in Multiple Hosts. Front. Cell. Infect. Microbiol. 7, 1–14 (2017).

146. S. R. Shames, L. Liu, J. C. Havey, W. B. Schofield, A. L. Goodman, C. R. Roy, Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries. Proc. Natl. Acad. Sci., 114 (2017).

147. H. Abd, S. P. Valeru, S. M. Sami, A. Saeed, S. Raychaudhuri, G. Sandström, Interaction between Vibrio mimicus and Acanthamoeba castellanii. Environ. Microbiol. Rep. 2, 166– 171 (2010).

148. J. M. Rodriguez-Paris, K. V. Nolta, T. L. Steck, Characterization of lysosomes isolated from Dictyostelium discoideum by magnetic fractionation. J. Biol. Chem. 268, 9110–9116 (1993).

149. J. A. Bozue, W. Johnson, Interaction of Legionella pneumophila with Acanthamoeba castellanii: Uptake by Coiling Phagocytosis and Inhibition of Phagosome-Lysosome Fusion. Infect. Immun. 64, 668–673 (1996).

150. J. D. Cirillo, S. Falkow, L. S. Tompkins, L. E. Bermudez, Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect. Immun. 65, 3759–3767 (1997).

151. J. Lamothe, S. Thyssen, M. A. Valvano, Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles of Acanthamoeba polyphaga. Cell. Microbiol. 6, 1127–1138 (2004).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る