リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Land Suitability Evaluation and Drought Stress Assessment of Tea Estates Using Satellite Remote Sensing-based Multi-Criteria Decision Support System」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Land Suitability Evaluation and Drought Stress Assessment of Tea Estates Using Satellite Remote Sensing-based Multi-Criteria Decision Support System

ANIMESH, CHANDRA DAS 筑波大学 DOI:10.15068/0002002140

2021.12.03

概要

Land suitability evaluation aims at finding suitable lands in order to optimize the land resource planning and management and drought stress assessment provides guidance to minimize the climate change effects for increasing tea production. Bangladesh is considered one of the major tea producing countries in the world. However, land under tea cultivation in Bangladesh has not been increased significantly to increase production. In addition, adverse global climate change effects, especially, the reduction in rainfall that results in drought have been challenging the optimal tea production in this country. Therefore, it is crucial to identify the suitability of the existing cultivable lands and assessing the drought stress in order to foster better land use decisions and climate change-focused tea production strategies in Bangladesh. However, adequate information is unavailable in the existing literature regarding land suitability evaluation and drought stress assessment for tea production in Bangladesh. Therefore, this study focused on developing a land suitability model for increasing tea production using multi-criteria decision support systems and assessing the drought severity including drought classification for tea estates in Bangladesh.

To meet the research objectives, the land suitability evaluation followed by subsequent validation of suitability classes using time-series yield information was performed to classify lands as well as to select the suitable lands for sustainable tea production in the north-eastern part of Bangladesh. According to the review of literature and field survey, twelve criteria were selected for the land suitability evaluation. The AHP was used as a MCA technique to incorporate expert’s opinion for prioritizing the criteria. The study area was classified into four categories- “Highly suitable”, “Moderately suitable”, “Marginally suitable” and “Not suitable”. This research utilized the phenological datasets of remote sensing, geospatial datasets of soil-plant bio-physical properties, and expert’s opinion. The Sentinel-2 satellite images were processed to obtain the layers for the Land Use and Land Cover (LULC) and normalized difference vegetation index (NDVI). Data of Shuttle Radar Topography Mission (SRTM) were used to generate the elevation layer. The vector layers of edaphic, climatic, topographic, and accessibility parameters were processed in the ArcGIS 10.7.1® software for respective raster layers. Finally, suitability classes were determined using spatial analysis of the reclassified raster layers along with the consideration of result of multi-criteria analysis. Results of this study showed that 41,460 hectares lands (3.37 % of the total lands) were under highly suitable class. The proportion of moderately suitable, marginally suitable and not-suitable classes of lands for tea cultivation in the study area were 9.01 %, 49.87 %, and 37.75%, respectively. Thirty-one tea estates were in highly suitable areas, 79 were in moderately suitable, 24 in marginally suitable, and only one in a not suitable area. There are two important vegetative parameters for yield estimation in tea viz. NDVI and LAI were selected for the validation of suitability classes. The results of yield estimation using time-series yield information shows the NDVI (R2 = 0.69, 0.66, and 0.67), and LAI (R2 = 0.68, 0.65, and 0.63) for 2017, 2018, and 2019, respectively.

The aim of the study on the assessment of drought stress for tea estates was to measure the drought severity in tea plantation areas using optical and thermal remote sensing technology with the Standardized Precipitation Index (SPI). To calculate the SPI, rainfall data for the Sylhet and Sreemangal station was gathered from the Bangladesh Meteorological Department (BMD). Landsat 8 OLI/TIRS images were processed to develop the maps for Land Surface Temperature (LST), and Soil Moisture Index (SMI). The Normalized Difference Moisture Index (NDMI) maps were developed from the Sentinel 2 satellite images. The drought frequency was calculated from the classification of droughts utilizing SPI. The results of the study demonstrated that the drought frequencies for the Sylhet station was 38.46% for near normal, 35.90% for normal, and 25.64% for moderately dry months. In contrast, the Sreemangal station showed the frequencies: 28.21%, 41.02%, and 30.77%, for near normal, normal, and moderately dry months, respectively. The correlation coefficient between the SMI and NDMI were observed as 0.84, 0.77, and 0.79 for the drought period of 2018-2019, 2019-2020 and 2020-2021, respectively, indicates a strong relationship between soil and plant canopy moisture. The results of yield prediction with respect to drought incidence in tea estates demonstrated that 61%, 60%, and 60% of estates in the study area provides lower yield than the observed yield during drought, which accounted for 7.72%, 11.92% and 12.52% yield loss in 2018, 2019, and 2020, respectively.

In conclusion, geospatial datasets have been proved to be a reliable source for land suitability evaluation with validation of suitability classes as well as drought stress assessment for tea plantation. This study suggests that the remote sensing technology with the multi-criteria decision support system could be used by scientists, land policy makers, and agricultural land use planners to select suitable lands as well as to measure the magnitude of drought stress in tea estates for increasing tea production

この論文で使われている画像

参考文献

AghaKouchak, A., Farahmand, A., Melton, F.S., Teixeira, J., Anderson, M.C., Wardlow, B.D., Hain, C.R. 2015. Remote sensing of drought: Progress, challenges, and opportunities. Reviews of Geophysics, 53, 452-480. https://doi.org/10.1002/2014RG000456.

Ahamed, T.N., Rao, K.G., Murthy, J.S.R.2000. GIS-based fuzzy membership model for crop-land suitability analysis. Agric. Sy st., 63, 75-95. doi:10.1016/S0308-521X(99)00036-0.

Ahmed, S., Stepp, J.R., Kapuscinski, A.R., Mendez, E. 2016. Beyond yields: Climate change effects on specialty crop quality and agroecological management. Elementa: Science of the Anthropocene, 4, 000092. doi:10.12952/journal.elementa.O00092.

Ahmed, S., Stepp, J.R., Orians, C., Griffin, T., Matyas, C., Robbat, A., Buckley, S. 2014. Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS ONE, 9, el09

Akhtaruzzaman, M., Haque, M.E., Osman, K.T. 2014. Morphological, physical and chemical characteristics ofhill forest soils at Chittagong University, Bangladesh. Open J. Soil Sei., 4, 26-35. doi:10.4236/ojss.2014.41004.

Alam, A.T.M.J., Rahman, M.S., Saadat, A.H.M., Huq, M.M. 2013. Gamma Distribution and its Application of Spatially Monitoring Meteorological Drought in Barind, Bangladesh. J. Environ. Sei. Nat. Resour., 5, 287-293. https://doi.Org/10.3329/jesnr.v512.14832.

Aldababseh , A., Temimi , M., Maghelal ,P., Branch , O., Wulfineyer , V. 2018 . Multi -criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. Sustainability, 10, 803. doi:10.3390/su10030803.

Amarathunga, S.L.D., Panabokke, C.R., Pathiranage, S.R.W., Amarasinghe, L., Wijeratne, M.A. 2008. Land suitability classification and mapping of tea lands in Ratnapura district. Sri Lanka J. Tea Sci., 73,1-10.

Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C., Lei, W. 2011. Morphological, physiological, and biochemical responses of plants to drought stress. African journal of agricultural research, 6, 2026-2032. DOI:10.5897/AJAR10.027.

Bandyopadhyay, S., Jaiswal, R.K., Hegde, VS., Jayaraman, V 2009. Assessment of land suitability potentials for agriculture using a remote sensing and GIS based approach. Int. J. Remote Sens., 30, 879-895. doi:10.1080/01431160802395235.

Bangladesh Tea Board (BTB). 2020. Statistical Handbook on Bangladesh Tea Industry 2019.,Project Development Unit; Bangladesh Tea Board: Sylhet, Bangladesh; Volume 8, pp.1-146.

Bhagat, R.M., Baruah, R.D., Safique, S. 2010. Climate and tea [Camellia sinensis (L.) O. Kuntze] production with special reference to northeastern India: A review. J. Environ. Res. Develop., 4, 1017- 1028. Available online: https://www.cabdirect.org/cabdirect/abstract/2011322704 (Last accessed on 16 December 2020).

Bhattacharya, A., Saini, U., Joshi, R., Kaur, D., Pal, A.K., Kumar, N., Gulati, A., Mohanpuria, P., Yadav, S.K., Kumar, S. 2014. 05mo/zz?-expressing transgenic tea plants have improved stress tolerance and are of higher quality. Transgenic Res., 23, 211-223. doi:10.1007/sl 1248-013-9740-5.

Bhuiya, Z.H. 1987. Organic matter status and organic recycling in Bangladesh soils. Resour. Conserv., 13,117-124, doi:10.1016/0166-3097(87)90055-1.

Binte Mostafiz, R., Noguchi, R., Ahamed, T. 2021. Agricultural land suitability assessment using satellite remote sensing-derived soil-vegetation indices. Land,10, 223. https://doi.org/10.3390/landl0020223.

Bozdag, A., Yavuz, F., Gunay, A.S. 2016. AHP and GIS based land suitability analysis for Cihanbeyli (Turkey) County. Environ. Earth Sei., 75, 813. doi:10.1007/sl2665-016-5558-9.

Brown, J.F., Reed, B.C., Hyes, M.J., Wilhite, A.D., Hubbard, K. 2002. A prototype drought monitoring system integrating climate and satellite data, Pecora 15/Land Satellite Information IV/ ISPRS Commission I/FIEOS. http://www.isprs.org/commissionl/proceedings02/paper/00074.

Caccamo, G., Chisholm, L.A., Bradstock, R.A., Puotinen, M.L. 2011. Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sensing of Environment, 115, 2626-2639. https://doi.Org/10.1016/j.rse.2011.05.018.

Chanhda, H., Wu, C.F., Ye, YM., Ayumi, Y 2010. GIS based land suitability assessment along Laos- China border. J. Forest. Res., 21,343-349. doi: 10.1007/s 11676-010-0080-5.

Chen, M., Zhang , Y., Yao, Y., Lu, J., Pu, X., Hu, T., Wang , P. 2020 . Evaluation of the OPTRAM Model to retrieve soil moisture in the Sanjiang Plain of Northeast China. Earth and Space Science, 7. e2020EA 001108. https://doi.org/10.1029/2020EA001108.

Choudhary, K., Shi, W., Boori, M.S., Corgne, S. 2019. Agriculture phenology monitoring using NDVI time series based on remote sensing satellites: A case study of Guangdong, China. Optic. Memory NeuralNetw., 28, 204-214. doi:10.3103/SI060992 x 19030093.

Clevers, J.G.P.W., Biiker, C., Van Leeuwen, H.J.C., Bouman, B.A.M. 1994. A framework for monitoring crop growth by combining directional and spectral remote sensing information. Remote Sens. Environ., 50,161-170. doi:10.1016/0034-4257(94)90042-6.

Collette, B.B.; Nauen, C.E. 1983. FAO Species Catalogue', Scombrids of the World; An Annotated and Illustrated Catalogue of Tunas, Mackerels, Bonitos and Related Species Known to Date; FAO Fisheries Synopsis, Food and Agriculture Organization of the United Nations: Rome, Italy; Volume 2; pp.1-137. ISBN 92-5-101381-0.

Cooper, R., Morre, D.J., Morre, D.M. 2005. Medicinal benefits of green tea: Part II. Review of anti­ cancer properties. J. Alter. Complem. Med.,11,639-652. doi:10.1089/acm.2005.11.639.

Das, A.C., Noguchi, R., Ahamed, T. 2020. Integrating an expert system, GIS, and satellite remote sensing to evaluate land suitability for sustainable tea production in Bangladesh. Remote Sens.,12, 4136. https://doi.org/10.3390/rsl2244136.

de Jesus, J.B., Santana, I.D.M. 2017. Estimation of land surface temperature in caatinga area using Landsat 8 data. Journal of Hyperspectral Remote Sensing, 7, 150-157. https://periodicos.ufpe.br/revistas/jhrs/article/viewFile/22766/pdf. (accessed on 15 April 2021).

Egashira, K., Aramaki, K., Yoshimasa, M., Takeda, A., Yamasaki, S.I. 2007 Variation of rare earth element of soils in the process of soil formation. Clay Sci.,13,117-124. doi:10.11362/j cssj clayscience 1960.13.117.

Egashira, K., Hagimine, M., Moslehuddin, A.Z.M. 1998. Fixed ammonium in some Bangladesh soils. SoilSci. Plant Nutr., 44, 269-272. doi:10.1080/00380768.1998.10414449.

Elsheikh, R., Shariff, A.R.B.M., Amiri, F., Ahmad, N.B., Balasundram, S.K., Soom, M.A.M. 2013. Agriculture Land Suitability Evaluator (ALSE): A decision and planning support tool for tropical and subtropical crops. Comput. Electron. Agric., 93, 98-110. doi:10.1016/j.compag.2013.02.003.

Enquist, B.J., Ebersole, J.J. 1994. Effects of added water on photosynthesis of Bistorta vivipara: the importance of water relations and leaf nitrogen in two alpine communities, Pikes peak, Colorado, U.S.A. Arctic and Alpine Research, 26, 29-34. DOI: 10.1080/00040851.1994.12003035.

Fang, B.; Kansara, P., Dandridge, C., Lakshmi, V. 2021. Drought monitoring using high spatial resolution soil moisture data over Australia in 2015-2019. Journal of Hydrology, 594,125960 . https:// doi.Org/10.1016/j.jhydrol.2021.125960.

Food and Agriculture Organization. 1976. A Framework for Land Evaluation', FAO: Rome, Italy.

Foy, C.D., Chaney, R.L., White, M.C. 1978. The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol., 29, 511-526. doi:10.1146/annurev.pp.29.060178.002455.

Gahlod, N.S., Binjola, S., Ravi. R., Arya, V.S. 2017. Land-site suitability evaluation for tea, cardamom and rubber using Geo-spatial technology in Wayanad district, Kerala. J. Appl. Nat. Sci., 9,1440- 1447. doi:10.31018/jans.v913.1381.

Gao, B.C. 1996. NDWIA normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ., 58, 257-266. https://doi.org/10.1016/S0034- 4257(96)00067-3.

Gunathilaka, R.D., Smart, J.C., Fleming, C.M. 2017. The impact of changing climate on perennial crops: The case of tea production in Sri Lanka. Clim. Change, 140, 577-592. doi:10.1007/sl0584-016-1882-z.

Guo, Y., Zhao, S., Zhu, C., Chang, X., Yue, C., Wang, Z., Lin, Y., Lai, Z. 2017. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress. BMC Plant Biol.,17, 211. https://doi.Org/10.l 186/sl2870-017-l 172-6.

Gupta, N., Gupta, P.P., Pramanik, P., Saikia, A., Sengupta, L., Bhagat, R.M., Bhattacharya, N. 2014. Integration of geoinfbrmatics and wireless sensors for smart agriculture in tea. In Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014),Paphos, Cyprus,12 August 2014; SPIE: WA, USA; Vol. 9229, p. 92290W. doi: 10.1117/12.2066366.

Gutman, G.G. 1990. Towards monitoring droughts from space. J. clim., 3, 282-295. doi:10.1175/ 1520-0442(1990)003<0282: TMDFS>2.0.CO;2.

Guttman, N.B. 1998. Uomparing the palmer drought index and the standardized precipitation index. Journal of the American Water Resources Association, 34, 113-121. https://doi.Org/10.llll/j.1752-1688.1998. tb05964.x.

Habibie, M.I., Noguchi, R., Matsushita, S., Ahamed, T. 2020. Development of micro-level classifiers from land suitability analysis for drought -prone areas in Indonesia . Remote Sensing Applications : Society and Environment, 20,100421. https://d0i.0rg/l 0.1016/j.rsase.2020.100421.

Habibie, M.I., Noguchi, R., Shusuke, M., Ahamed, T. 2019. Land suitability analysis for maize production in Indonesia using satellite remote sensing and GIS-based multicriteria decision support system. GeoJournal, 1-31. doi: 10.1007/s 10708-019-10091-5.

Hajiboland, R. 2017. Environmental and nutritional requirements for tea cultivation. Folia Hort.,29, 199-220. doi:10.1515/fhort-2017-0019.

Hinton, J.C. 2007. GIS and remote sensing integration for environmental applications. Int. J. Geogr. Inf. Sy st.,10, 877-890. doi:10.1080/02693799608902114.

Hussain, S.G., Chowdhury, M.K.A., Chowdhury, M.A.H. 2012. Land Suitability Assessment and Crop Zoning of Bangladesh', Bangladesh Agricultural Research Council (BARC): Farmgate, Dhaka, Bangladesh; pp.1-110.

International lea Committee (ITC). 2017. Annual Bulletin of Statistics, International Tea Committee Ltd.: London, UK.

Islam, M.A., Hasan, M.A., Farukh, M.A. 2017. Application of GIS in general soil mapping of Bangladesh. J. Geogr. Inform. Sy st., 9, 604-621.doi:10.4236/jgis.2017.95038.

Islam, M.N., Al-Amin, M. 2019. Life behind leaves: Capability, poverty and social vulnerability of tea garden workers in Bangladesh. Labor Hist., 60, 571-587. doi:10.1080/0023656X.2019.1623868.

Jayasinghe, S.L., Kumar, L., Sandamali, J. 2019. Assessment of potential land suitability for tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka using a GIS-based multi-criteria approach. Agriculture, 9,148. doi:10.3390/agriculture9070148.

Jiang, S., Wang, W., Xiao, G., Li, Z. 2011. Design of wireless sensor node for drought monitoring in tea plantation. In 2011 International Conference on Electric Information and Control Engineering Wuhan, China, 15-17 April 2011; IEEE: NY, USA; pp. 1328-1332. doi: 10.1109/ICEICE.2011.5777293.

Kamruzzaman, M., Hwang, S., Cho, J., Jang, M.W., Jeong, H. 2019. Evaluating the spatiotemporal characteristics of agricultural drought in Bangladesh using effective drought index. Water,11, 2437. https://doi.org/10.3390/wl1122437.

Kamruzzaman, M., Parveen, S., Das, A.C. 2015. Livelihood improvement of tea garden workers: A scenario of marginalized women group in Bangladesh. Asian J. Agric. Ext. Econ. Soc., 7,1-7. doi:10.9734/AJAEES/2015/18690.

Kamruzzaman, M., Shaw, R. 2018. Flood and sustainable agriculture in the Haor basin of Bangladesh: A review paper. Univ. J. Agric. Res., 6, 4049. doi:10.13189/ujar.2018.060106.

Khormali, F., Ayoubi, S., Kananro Foomani, F., Fatemi, A. 2012. Tea yield and soil properties as affected by slope position and aspect in Lahijan area, Iran. Int. J. Plant Prod.,1,99-111. doi:10.22069/IJPP.2012.529.

Korhonen, L., Packalen, P., Rautiainen, M. 2017. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ.,195, 259-274. https://doi.Org/10.1016/j.rse.2017.03.021.

Krishna, T.M., Ravikumar, G., Krishnaveni, M. 2009. Remote sensing based agricultural drought assessment in Palar basin of Tamil Nadu state, India. J Indian Soc. Remote Sens., 37, 9-20. https://doi. org/10.1007/sl2524-009-0008-8.

Lambert, J.D., Yang, C.S. 2003. Mechanisms of cancer prevention by tea constituents. J. Nutr., 133, 3262-3267. doi:10.1093/jn/133.10.3262S.

Li, B., Zhang, F., Zhang, L.W., Huang, J.F., Jin, Z.F., Gupta, D.K. 2012. Comprehensive suitability evaluation of tea crops using GIS and a modified land ecological suitability evaluation model. Pedosphere, 22,122-130. doi:10.1016/S1002-0160(11)60198-7.

McDowell, R.W., Snelder, T., Harris, S., Lilbume, L., Lamed, S.T., Scarsbrook, M., Curtis, A., Holgate, B., Phillips, J., Taylor, K. 2018. The land use suitability concept: Introduction and an application of the concept to inform sustainable productivity within environmental constraints. Ecol. Indic., 91,212-219. doi:10.1016/j.ecolind.2018.03.067.

McKee, T.B., Doesken, N.J., Kleist, J. 1993. The relationship of drought frequency and duration to time scale. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, California, 17-22 January; Vol. 17, pp. 179–183. https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf.

Mishra, A. K., Singh, V. P. 2010. A review of drought concepts. J. Hydrol., 354, 202- 216. https://doi.Org/10.1016/j.jhydrol.2010.07.012.

Mukhopadhyay, M., Mondal, T.K. 2017. Cultivation, improvement, and environmental impacts of tea. Oxford Res. Encycl. Environ. Sci. doi:10.1093/acrefore/9780199389414.013.373.

Murad, H., Islam, A.K.M.S. 2011. Drought assessment using remote sensing and GIS in north-west region of Bangladesh. In Proceedings of the 3rd International Conference on Water & Flood Management, 797-804.

Muthumanickam, D., Kannan, P., Kumaraperumal,R., Natarajan, S., Sivasamy, R., Poongodi, C. 2011. Drought assessment and monitoring through remote sensing and GIS in western tracts of Tamil

Nadu, India. International journal of remote sensing, 32, 10. 5157-5176. DOI:1080/01431161.2010. 494642.

Nalina, M., Saroja, S., Chakravarthi, M., Rajkumar, R., Radhakrishnan B., Chandrashekara K.N. 2021. Water deficit-induced oxidative stress and differential response in antioxidant enzymes of tolerant and susceptible tea cultivars under field condition. Acta Physiol Plant, 43,1-17. doi :10.1007/s 11738-020-03174-1.

Nalina, M., Saroja, S., Rajkumar, R., Radhakrishnan, B., Chandrashekara, K.N. 2018. Variations in quality constituents of green tea leaves in response to drought stress under south Indian condition. Scientia horticulturae, 233, 359-369. doi:10.1016/j.scienta.2018.02.009.

Natesan, S.1999. Tea soils. In Global Advances in Tea Science', Jain, N.K., Ed.; Aravali Books International Pty Ltd.: New Delhi, India.

Nemani, R., Hashimoto, H., Votava, P., Melton, F., Wang, W., Michaelis, A., Mutch, L., Milesi, C., Hiatt, S., White, M. 2009. Monitoring and forecasting ecosystem dynamics using the terrestrial observation and prediction system (TOPS). Remote Sensing of Environment, 113, 1497-1509. doi:10.1016/j.rse.2008.06.017.

Nguyen , H., Nguyen , T., Hoang, N., Bui, D., Vu, H., Van, T. 2020 . The application of LSE software : Anew approach for land suitability evaluation in agriculture. Comput. Electron. Agric.,173,1- 16. doi:10.1016/ j.compag.2020.105440.

Parthasarathy, V.A., Chattopadhyay, P.K., Bose, T.K. 2006. Plantation Crops-I; Naya Udyog: Calcutta, India. ISBN 13: 9788185971971.38.

Paulo, A.A., Pereira, L.S. 2006. Drought concepts and characterization: Comparing drought indices applied at local and regional scales. Water Int., 31, 37-49. https://doi.org/10.1080/ 02508060608691913.

Paulo, A.A., Rosa, R.D., Pereira, L.S. 2012. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Nat. Hazards Earth Syst. Sci.,12,1481-1491. https://doi.org/10.5194/nhess-12-1481-2012.

Peterson, T.C., Vose, R.S. 1997. An overview of the global historical climatology network temperature database. Bull. Am. Meteorol. Soc., 78, 2837-2849. https://doi.Org/10.l 175/1520- 0477( 1997)078< 2837:AOOTGH>2.0.CO;2.

Pezeshki, S.R. 2001. Wetland plant responses to soil flooding. Environ. Exp. Bot., 46, 299-312. doi:10.1016/S0098-8472(01)00107-1.

Phan, P., Chen, N., Xu, L., Chen, Z. 2020. Using Multi-Temporal MODIS NDVI Data to monitor tea Status and forecast yield : A case study at Tanuyen , Laichau , Vietnam . Remote Sens., 72,1814 . doi:10.3390 /rsl 2111814.

Pramanik, M.K. 2016. Site suitability analysis for agricultural land use ofDaqeeling district using AHP and GIS techniques. Model. Earth Syst. Environ., 2,1-22. doi: 10.1007/s40808-016-0116-8.

Prokop, P, Ploskonka, D. 2014. Natural and human impact on the land use and soil properties of the Sikkim Himalayas piedmont in India. J. Environ. Manag., 138, 15-23. doi:10.1016.jenvman.2014.01. 034.

Pumamasari, R.A., Ahamed, T., Noguchi, R. 2019. Land suitability assessment for cassava production in Indonesia using GIS, remote sensing and multi-criteria analysis. Asia-Pae. J. Reg. Sei., 3,1-32. doi:10.1007/s41685-018-0079-z.

Rahimzadeh-Bajgiran, P., Omasa, K., Shimizu, Y. 2012. Comparative evaluation of the vegetation dryness index (VDI), the temperature vegetation dryness index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS Journal of Photogrammetry and Remote Sensing, 68,1-12. https://doi.Org/10.1016/j.isprsjprs.2011.10.009.

Rama Rao, N., Kapoor, M., Sharma, N., Venkateswarlu, K. 2007. Yield prediction and waterlogging assessment for tea plantation land using satellite image-based techniques. Int. J. Remote Sens., 28,1561-1576. doi:10.1080/01431160600904980.

Rashid, M.F.A. 2019. Uapabilities of a GIS-based multi-criteria decision analysis approach in modelling migration. GeoJournal, 84, 483-496. doi:10.1007/sl0708-018-9872-5.

Razali, S.M., Atucha, A.A.M., Nuruddin, A.A., Hamid, H.A., Shafri, H.Z.M. 2016. Monitoring vegetation drought using MODIS remote sensing indices for natural forest and plantation areas. Journal of Spatial Science, 61,157-172. https://doi.org/10.1080/14498596.2015.1084247.

Romano , G., Ricci, G.F., Gentile, F. 2020. Influence of different satellite imagery on the analysis of riparian leaf density in a mountain stream. Remote Sens.,12, 3376. doi:10.3390/rsl2203376.

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. m Proceedings of the Third Earth Resources Technology Satellite—1 Symposium; NASA SP-351; pp. 309–317. Available online: https://ntrs.nasa.gov/citations/19740022614 (Last accessed on 16 December 2020).

Saaty, T.L. 1989. Group decision making and the AHP. In The Analytic Hierarchy Process', Golden, B.L., Wasil, E.A., Harker, P.T., Eds.; Springer: Berlin/Heidelberg.

Saaty, T.L.1990. How to make a decision: The analytic hierarchy process. Eur. J. Operat. Res., 48, 9-26. doi:10.1016/0377-2217(90)90057-1.

Sabaghy, S., Walker, J.P., Renzullo, L.J., Jackson, T.J. 2018. Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities. Remote Sens. Environ., 209, 551-580. https://doi. Org/10.1016/j.rse.2018.02.065.

Saha, A., Patil,M., Goyal, V.C., Rathore, D.S. 2019. Assessment and impact of soil moisture index in agricultural drought estimation using remote sensing and GIS techniques. Proceedings, 7, 2. https://doi.org/10.3390/ECWS-3-05802.

Serrano, J., Shahidian, S., Marques da Silva, J. 2019. Evaluation of Normalized Difference Water Index as a tool for monitoring pasture seasonal and inter-annual variability in a Mediterranean agro- silvo-pastoral system. Water,11,62. https://doi.org/10.3390/wl 1010062.

Shao, H.B., Chu, L.Y., Jaleel, C.A., Manivannan, P., Panneerselvam, R., Shao, M.A. 2009. Understanding water deficit stress-induced changes in the basic metabolism of higher plants- biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol., 29,131-151. https://doi.org/10.1080/07388550902869792.

Su, S., Wan, C., Li, J., Jin, X., Pi, J., Zhang, Q., Weng, M. 2017. Economic benefit and ecological cost of enlarging tea cultivation in subtropical China: Characterizing the trade-off for policy implications. Land Use Policy, 66,183-195. doi: 10.1016/j.landusep01.2017.04.044.

Su, S., Zhou, X., Wan, C., Li, Y, Kong, W. 2016. Land use changes to cash crop plantations: Crop types, multilevel determinants and policy implications. Land Use Policy, 50, 379-389. doi:10.1016.landusep01.2015.10.003.

Sultana, J., Siddique, M.N.A., Kamaruzzaman, M., Halim, M.A. 2014. Conventional to ecological: Tea plantation soil Management in Panchagarh district of Bangladesh. J. Sei. Tech. Env. Info., 7, 27-37. doi:10.18801/jstei.010114.03.

Sun, D., Jiang, S., Wang, W., Tang, J. 2010. WSN design and implementation in a tea plantation for drought monitoring . In 2010 International Conference on Cyber -Enabled Distributed Computing and Knowledge Discovery, Huangshan, China, 10-12 October 2010; IEEE: NY, USA; pp.156-159. doi: 10. 1109/CyberC.2010.36.

Sys, C., Van Ranst, E., Debaveye, J., Beemaert, F.1993. Land Evaluation—Part III—Crop

Requirements. Agricultural Publications-No 7.; General Administration for Development Cooperation: Brussels , Belgium . Available online : http://hdl.handle .net/1854 /LU-233235 (Last accessed on 16 December 2020).

Tewari, S., Kulhavy, J., Rock, B.N., Hadas, P. 2003. Remote monitoring of forest response to changed soil moisture regime due to river regulation. J. Forest Sci.,49, 429438. doi:10.17221/4716jfs. Tuvshinbayar, D., Erdenetuya, B., Erkhembayar, E., Batbileg, B., Sarangerel, J. 2017. Some Results of crop stress monitoring by remote sensing in northern Mongolia. Mong. J. Agric. Sei., 21,59-63. doi:10.5564/mjas.v21i02.906.

Van Niel, T.G., Me Vicar, T.R., Fang, H., Liang, S. 2003 . Calculating environmental moisture for per­ field discrimination of rice crops. International Journal of Remote Sensing, 24, 885-890. https://doi.org/10. 1080/0143116021000009921.

Vitousek, P.M. 1994. Beyond global warming: Ecology and global change. Ecology, 75,1861-1876. doi:10.2307/1941591.

Wang, F., Brent Hall,G., Subaryono .1990. Fuzzy information representation and processing in conventional GIS software : Database design and application . Int. J. Geogr . Inf. Sy st., 4,261 -283 . doi:10.1080 /0 2693799008941546.

Wang, L., Qu, J.J. 2009. Satellite remote sensing applications for surface soil moisture monitoring : A review. Front. Earth Sci. China, 3, 237-247. DOI 10.1007/si 1707-009-0023-7.

Wang, Z., Guo, P., Wan, H., Tian, F., Wang, L. 2020. Integration of microwave and optical / infrared derived datasets from multi-satellite products for drought monitoring. Water, 12,1504. https://doi.org/10.33 90/ w 12051504.

West, H., Quinn, N., Horswell,M. 2019. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ. 232,111291. https://doi.Org/10.1016/j. rse.2019.111291.

Wijeratne, M.A. 1996. Vulnerability of Sri Lanka tea production to global climate change. Water Air SoilPollut. 92, 87-94. https://doi.org/10.1007/BF00175555.

Wilhite , D.A. 2005 . Drought and water crises : Science , technology , and management issues , CRC Press : Taylor and Francis Group, NW Suite 3000, FL, USA; pp.1-432, ISBN 13: 978-1-4200- 2838-6.

World Meteorological Organization. 2012. Standardized Precipitation Index User Guide (WMO- No.1090); WMO: Geneva, Switzerland. https://wamis.org/agm/pubs/SPI/WM0 1090_EN.pdf.

Xi, Z., Lu, D., Liu, L., Ge, H. 2016. Detection of drought-induced Hickory disturbances in western Lin An county, China, using multitemporal Landsat imagery. Remote Sens., 8, 345. https://doi. org/10.3390/rs8040345.

Xulu, S., Peerbhay, K., Gebreslasie, M., Ismail,R. 2018. Drought influence on forest plantations in Zululand, South Africa, using MODIS time-series and climate data. Forests, 9, 528. https://doi.org/10.3390/f9090528.

Yang, Y., Anderson, M., Gao, F., Hain, C., Noormets, A., Sun, G., Wynne, R., Thomas, V., Sun, L. 2020. Investigating impacts of drought and disturbance on evapotranspiration over a forested landscape in North Carolina, USA using high spatiotemporal resolution remotely sensed data. Remote Sensing of Environment, 238, 111018. https://doi.Org/10.1016/j.rse.2018.12.017.

Yin, J., DOdorico, P., Porporato, A. 2019. Soil moisture dynamics in water-limited ecosystems. In Dryland Ecohydrology, 2nd ed.; D'Odorico, P., Porporato, A., Runyan, C.W., Eds.; Springer: Cham, Switzerland; pp.31-48, ISBN: 978-3-030-23269-6.

Zhang, D., Zhou, G. 2016. Estimation of soil moisture from optical and thermal remote sensing: A review. Sensors,16,1308. DOI:10.3390/sl6081308.

Zhang, W.L., Xie, H., Li, T., Wang, D.D. 2017. Effects of different soil texture and management pattern on soil properties and tea quality of tea garden. Hubei Agric. Sei.,10, 7.

Zhou, L., Xu, H., Mischke, S., Meinhardt, L.W., Zhang, D., Zhu, X., Li, X., Fang, W. 2014. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress. Hortic. Res.,1,14029. https://doi.org/10.1038/hortres.2014.29.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る