リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Urethral identification using three-dimensional magnetic resonance imaging and interfraction urethral motion evaluation for prostate stereotactic body radiotherapy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Urethral identification using three-dimensional magnetic resonance imaging and interfraction urethral motion evaluation for prostate stereotactic body radiotherapy

Kato, Yutaka Okumiya, Shintaro Okudaira, Kuniyasu Ito, Junji Kumagai, Motoki Kamomae, Takeshi Noguchi, Yumiko Kawamura, Mariko Ishihara, Shunichi Naganawa, Shinji 名古屋大学

2023.08

概要

Prostatic urethra identification is crucial in stereotactic body radiotherapy (SBRT) for prostate
cancer because urethral dose reduction can reduce the risk of urinary toxicity, such as frequency,
dysuria, and urethral stricture, without significantly increasing the risk of local recurrence.1,2
Because urethral visualization is difficult by computed tomography (CT), there are two strategies for achieving this goal: one is urinary catheter insertion, which is commonly employed1,3-5
and recommended by GEC/ESTRO.6 However, catheterization every time for multiple days of
irradiation is invasive and associated with a risk of infection, and is undesirable for patients. The
incidence of bacteriuria associated with indwelling catheterization is 3%–8% per day.7 Although
the risk of infection may be small,8 a previous study revealed that the Foley catheter-related
genitourinary trauma was as common as symptomatic urinary tract infection and concluded that
the elimination of unnecessary Foley catheterization could prevent symptomatic urinary tract
infection, unnecessary antimicrobial therapy for asymptomatic bacteriuria, and Foley catheterrelated trauma.9 Another is that catheter insertion during radiotherapy must be performed by
oncologists or radiology nurses who are unfamiliar with the procedure, which may increase
patient discomfort and infection risk. Furthermore, urethral catheter placement may displace the
urethral position,10,11 and removal of a catheter may cause prostate rotation,12 resulting in possible
planning inaccuracies. As another strategy without using a catheter, a previous study advocated
the concept of placing a “surrogate urethra” in the anatomic center of the prostate if the location
of the urethra cannot be visualized.13 However, another study demonstrated that the urethral dose
might be overestimated when using a surrogate urethra,14 and there were cases where the urethra
was not located in the anatomical center of the prostate.14,15 Therefore, clear urethral visualization
using a clinical image is desirable for accurate radiation treatment planning.
Magnetic resonance imaging (MRI) is increasingly used in radiation treatment planning
because of its superior soft tissue contrast16,17 and may be suitable for urethral identification
purposes.16 Several studies have investigated urethral identification using MRI; however, they
used only two-dimensional (2D) T2-weighted (T2W) turbo spin-echo (TSE) imaging.15,18-20 A
previous study proposed MRI while urinating; however, there were some problems regarding
the psychological burden on patients and the urine bag used to collect urine.19 To overcome
these drawbacks, Yoshimura et al demonstrated that it was possible to identify the prostatic
urethra using “posturination” MRI with good accuracy.20 However, there are disadvantages like
the bladder volume does not match that of CT imaging and the accuracy is inferior to that of
CT with catheter insertion. These limitations indicate that there is not yet a complete approach
for prostatic urethral identification noninvasively.
According to the prostate imaging reporting and data system (PI-RADS) guidelines,21 2D
T2W-TSE is a key sequence for diagnostic prostate MRI. However, recent advances have shown
that three-dimensional (3D) T2W-TSE sequences are more readily achievable with a clinically
acceptable acquisition time.22 Some studies have directly compared 2D- and 3D-T2W sequences,
focusing on image quality and tumor detection mainly for diagnostic purposes in prostate
MRI, and have shown the usefulness of 3D sequences.23,24 Additionally, some studies have
Nagoya J. Med. Sci. 85. ...

この論文で使われている画像

参考文献

1 2 3 4 5 6 7 8 9 10 Shimizu S, Nishioka K, Suzuki R, et al. Early results of urethral dose reduction and small safety margin in

intensity-modulated radiation therapy (IMRT) for localized prostate cancer using a real-time tumor-tracking

radiotherapy (RTRT) system. Radiat Oncol. 2014;9:118. doi:10.1186/1748-717X-9-118.

Repka MC, Guleria S, Cyr RA, et al. Acute urinary morbidity following stereotactic body radiation therapy

for prostate cancer with prophylactic alpha-adrenergic antagonist and urethral dose reduction. Front Oncol.

2016;6:122. doi:10.3389/fonc.2016.00122.

Tanaka O, Hayashi S, Matsuo M, et al. Comparison of MRI-based and CT/MRI fusion-based postimplant dosimetric analysis of prostate brachytherapy. Int J Radiat Oncol Biol Phys. 2006;66(2):597–602.

doi:10.1016/j.ijrobp.2006.06.023.

Bowes D, Crook JM, Rajapakshe R, Araujo C, Parker B. Defining a magnetic resonance scan sequence

for permanent seed prostate brachytherapy postimplant assessment. Brachytherapy. 2013;12(1):25–29.

doi:10.1016/j.brachy.2012.03.001.

Amdur RJ, Gladstone D, Leopold KA, Harris RD. Prostate seed implant quality assessment using MR and

CT image fusion. Int J Radiat Oncol Biol Phys. 1999;43(1):67–72. doi:10.1016/S0360-3016(98)00372-1.

Hoskin PJ, Colombo A, Henry A, et al. GEC/ESTRO recommendations on high dose rate afterloading

brachytherapy for localised prostate cancer: an update. Radiother Oncol. 2013;107(3):325–332. doi:10.1016/j.

radonc.2013.05.002.

Hooton TM, Bradley SF, Cardenas DD, et al. Diagnosis, prevention, and treatment of catheter-associated

urinary tract infection in adults: 2009 international clinical practice guidelines from the Infectious Diseases

Society of America. Clin Infect Dis. 2010;50(5):625–663. doi:10.1086/650482.

Saint S. Clinical and economic consequences of nosocomial catheter-related bacteriuria. Am J Infect Control.

2000;28(1):68–75. doi:10.1016/S0196-6553(00)90015-4.

Leuck AM, Wright D, Ellingson L, Kraemer L, Kuskowski MA, Johnson JR. Complications of Foley

catheters — is infection the greatest risk? J Urol. 2012;187(5):1662–1666. doi:10.1016/j.juro.2011.12.113.

Dekura Y, Nishioka K, Hashimoto T, et al. The urethral position may shift due to urethral catheter place-

Nagoya J. Med. Sci. 85. 504–517, 2023

516

doi:10.18999/nagjms.85.3.504

3D-MRI for urethra in prostate SBRT

ment in the treatment planning for prostate radiation therapy. Radiat Oncol. 2019;14(1):226. doi:10.1186/

s13014-019-1424-8.

11 Anderson C, Lowe G, Ostler P, et al. I-125 seed planning: an alternative method of urethra definition.

Radiother Oncol. 2010;94(1):24–29. doi:10.1016/j.radonc.2009.11.003.

12 Litzenberg DW, Muenz DG, Archer PG, et al. Changes in prostate orientation due to removal of a Foley

catheter. Med Phys. 2018;45(4):1369–1378. doi:10.1002/mp.12830.

13 Waterman FM, Dicker AP. Determination of the urethral dose in prostate brachytherapy when the urethra

cannot be visualized in the postimplant CT scan. Med Phys. 2000;27(3):448–451. doi:10.1118/1.598912.

14 Lee HK, D’Souza WD, Yamal JMJ, et al. Dosimetric consequences of using a surrogate urethra to estimate

urethral dose after brachytherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2003;57(2):355–361.

doi:10.1016/S0360-3016(03)00583-2.

15 Kataria T, Gupta D, Goyal S, et al. Simple diagrammatic method to delineate male urethra in prostate cancer

radiotherapy: an MRI based approach. Br J Radiol. 2016;89(1068):20160348. doi:10.1259/bjr.20160348.

16 Schmidt MA, Payne GS. Radiotherapy planning using MRI. Phys Med Biol. 2015;60(22):R323-R361.

doi:10.1088/0031-9155/60/22/R323.

17 Kapanen M, Collan J, Beule A, Seppälä T, Saarilahti K, Tenhunen M. Commissioning of MRI-only based

treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med. 2013;70(1):127–

135. doi:10.1002/mrm.24459.

18 Zakian KL, Wibmer A, Vargas HA, et al. Comparison of motion-insensitive T2-weighted MRI pulse sequences for visualization of the prostatic urethra during MR simulation. Pract Radiat Oncol. 2019;9(6):e534e540. doi:10.1016/j.prro.2019.06.009.

19 Rai R, Sidhom M, Lim K, Ohanessian L, Liney GP. MRI micturating urethrography for improved

urethral delineation in prostate radiotherapy planning: a case study. Phys Med Biol. 2017;62(8):3003–3010.

doi:10.1088/1361-6560/62/8/3003.

20 Yoshimura T, Nishioka K, Hashimoto T, et al. Visualizing the urethra by magnetic resonance imaging

without usage of a catheter for radiotherapy of prostate cancer. Phys Imaging Radiat Oncol. 2021;18:1–4.

doi:10.1016/j.phro.2021.03.002.

21 Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS prostate imaging-reporting and data system: 2015,

version 2. Eur Urol. 2016;69(1):16–40. doi:10.1016/j.eururo.2015.08.052.

22 Gupta RT, Spilseth B, Patel N, Brown AF, Yu J. Multiparametric prostate MRI: focus on T2-weighted

imaging and role in staging of prostate cancer. Abdom Radiol(NY). 2016;41(5):831–843. doi:10.1007/

s00261-015-0579-5.

23 Polanec SH, Lazar M, Wengert GJ, et al. 3D T2-weighted imaging to shorten multiparametric prostate MRI

protocols. Eur Radiol. 2018;28(4):1634–1641. doi:10.1007/s00330-017-5120-5.

24 Rosenkrantz AB, Neil J, Kong X, et al. Prostate cancer: comparison of 3D T2-weighted with conventional

2D T2-weighted imaging for image quality and tumor detection. AJR Am J Roentgenol. 2010;194(2):446–452.

doi:10.2214/AJR.09.3217.

25 Mugler JP 3rd. Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging. 2014;39(4):745–

767. doi:10.1002/jmri.24542.

26 Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics.

1977;33(1):159–174. doi:10.2307/2529310.

27 Jonsson J, Nyholm T, Söderkvist K. The rationale for MR-only treatment planning for external radiotherapy.

Clin Transl Radiat Oncol. 2019;18:60–65. doi:10.1016/j.ctro.2019.03.005.

28 Bird D, Henry AM, Sebag-Montefiore D, Buckley DL, Al-Qaisieh B, Speight R. A systematic review of

the clinical implementation of pelvic magnetic resonance imaging-only planning for external beam radiation

therapy. Int J Radiat Oncol Biol Phys. 2019;105(3):479–492. doi:10.1016/j.ijrobp.2019.06.2530.

29 Wong OL, Poon DMC, Kam MKM, et al. 3D-T2W-TSE radiotherapy treatment planning MRI using

compressed sensing acceleration for prostate cancer: image quality and delineation value. Asia Pac J Clin

Oncol. 2022;18(5):e369-e377. doi:10.1111/ajco.13752.

30 Zilli T, Jorcano S, Bral S, et al. Once-a-week or every-other-day urethra-sparing prostate cancer

stereotactic body radiotherapy, a randomized phase II trial: 18 months follow-up results. Cancer Med.

2020;9(9):3097–3106. doi:10.1002/cam4.2966.

31 Jaccard M, Zilli T, Dubouloz A, et al. Urethra-sparing stereotactic body radiation therapy for prostate cancer:

quality assurance of a randomized phase 2 trial. Int J Radiat Oncol Biol Phys. 2020;108(4):1047–1054.

doi:10.1016/j.ijrobp.2020.06.002.

References End

Nagoya J. Med. Sci. 85. 504–517, 2023

517

doi:10.18999/nagjms.85.3.504

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る