リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Energetics of heterogeneous Mg {101¯2} deformation twinning migration using an atomistically informed phase-field model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Energetics of heterogeneous Mg {101¯2} deformation twinning migration using an atomistically informed phase-field model

Ishii, Akio 大阪大学

2020.07.10

概要

We have constructed an atomistically informed phase-field model for the quantitative energetic analysis of phase transformations. In our model, to describe the general phase transformation with a non-linear correlation between displacive and diffusive modes, we have defined two order parameters, γ and ϕ, which describe the lattice distortion (displacive mode) and shuffling (diffusive mode), respectively. Our method provides a way to introduce the energetics from atomistic simulations to the phase-field model, describes γ and ϕ in an atomic model, and derives phase-field parameters from the free energy calculated by atomistic simulation. As an application of our model, we used the energetics obtained from atomistic simulations using a density functional theory potential, and we calculated the free energy change during the heterogeneous {101¯2} twin migration of hexagonally close-packed (HCP) Mg, which can be considered as a lattice distortion and shuffling mixed phase transformation, by combining our phase-field model with the nudged elastic band method. The activation energy, and the critical nucleus size of the heterogeneous {101¯2} twin migration under a set stress were derived. The critical c-axis tensile stress (athermal stress), at which the activation energy becomes zero, is consistent with the experimental yield stress of {101¯2} for the twinning deformation of HCP Mg nanopillars in tensile tests. The critical nucleus size of the heterogeneous {101¯2} twin migration is on the range of nanometers under several hundred megapascals stress, which is consistent with the experimental observation of nanotwins.

参考文献

[1] L. Chen, Phase-field models for microstructure evolution, Ann. Rev. Mater. Res. 32 (2002) 113–140.

[2] Y. Wang, J. Li, Phase field modeling of defects and deformation, Acta Mater. 58 (2010) 1212–1235.

[3] D. Wang, Q. Liang, S. Zhao, P. Zhao, T. Zhang, L. Cui, Y. Wang, Phase field simu- lation of martensitic transformation in pre-strained nanocomposite shape memory alloys, Acta Mater. 164 (2019) 99–109.

[4] R. Shi, Y. Zheng, R. Banerjee, H.L. Fraser, Y. Wang, ω-Assisted α nucleation in a metastable β titanium alloy, Scr. Mater. 171 (2019) 62–66.

[5] A. Yamanaka, K. McReynolds, P.W. Voorhees, Phase field crystal simulation of grain boundary motion, grain rotation and dislocation reactions in a BCC bicrystal, Acta Mater. 133 (2017) 160–171.

[6] C. Shen, J. Li, Y. Wang, Predicting structure and energy of dislocations and grain boundaries, Acta Mater. 74 (2014) 125–131.

[7] D. Qiu, P. Zhao, C. Shen, W. Lu, D. Zhang, M. Mrovec, Y. Wang, Predicting grain boundary structure and energy in BCC metals by integrated atomistic and phase- field modeling, Acta Mater. 164 (2019) 799–809.

[8] T. Takaki, T. Shimokawabe, M. Ohno, A. Yamanaka, T. Aoki, Unexpected selection of growing dendrites by very-large-scale phase-field simulation, J. Crys. Grow. 382 (2013) 21–25.

[9] T. Takaki, Phase-field modeling and simulations of dendrite growth, ISIJ Int. 54 (2014) 437–444.

[10] H. Neumann-Heyme, K. Eckert, C. Beckermann, Dendrite fragmentation in alloy solidification due to sidearm pinch-off, Phys. Rev. E 92 (2015) 060401 .

[11] T. Aoki, T. Takaki, Y. Shibuta, M. Ohno, S. Sakane, Permeability prediction for flow normal to columnar solidification structures by large scale simulations of phase field and lattice Boltzmann methods, Acta Mater. 164 (2019) 237–249.

[12] G. Kim, T. Takaki, Y. Shibuta, S. Sakane, K. Matsuura, M. Ohno, A parametric study of morphology selection in equiaxed dendritic solidification, Comput. Mater. Sci. 162 (2019) 76–81.

[13] E. Miyoshi, T. Takaki, M. Ohno, Y. Shibuta, S. Sakane, T. Shimokawabe, T. Aoki, Ultra-large-scale phase-field simulation study of ideal grain growth, NPJ Comp. Mater. 3 (2017) 1–5.

[14] Q. Peng, Y.J. He, Z. Moumni, A phase-field model on the hysteretic magneto-me- chanical behaviors of ferromagnetic shape memory alloy, Acta Mater. 88 (2015) 13–24.

[15] A. Vidyasagar, W.L. Tan, D.M. Kochmann, Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods, J. Mech. Phys. Sol. 106 (2017) 133–151.

[16] Y. Cui, N. Hatcher, Y. Gao, F. Yang, N. Zhou, L. Kovarik, R. Noebe, M. Mills, Y. Wang, P-phase precipitation and its effect on martensitic transformation in (Ni, Pt)Ti shape memory alloys, Acta Mater. 60 (2012) 1514–1527.

[17] H. Song, R. Shi, Y. Wang, J.J. Hoyt, Simulation study of heterogeneous nucleation at grain boundaries during the austenite-ferrite phase transformation: comparing the classical model with the multi-phase field nudged elastic band method, Metall. Mater. Trans. A 48 (2017) 2730–2738.

[18] J.R. Mianroodi, B. Svendsen, Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems, J. Mech. Phys. Sol. 77 (2015) 109–122.

[19] Z.G. Mei, L. Liang, Y.S. Kim, T. Wiencek, E. O’Hare, A.M. Yacout, G. Hofman, M. Anitescu, Grain growth in U-7Mo alloy: A combined first-principles and phase field study, J. Nucl. Mater. 473 (2016) 300–308.

[20] J.R. Mianroodi, P. Shanthraj, P. Kontis, J. Cormier, B. Gault, B. Svendsen, D. Raabe, Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni-Al-Co, Acta Mater. 175 (2019) 250–261.

[21] D.E. Spearot, V. Taupin, K. Dang, L. Capolungo, Mechanics of Materials Structure and kinetics of three-dimensional defects on the {101¯2} boundary in magnesium: Atomistic and phase-field simulations, Mech. Mater. 143 (2020) 103314 .

[22] C. Liu, P. Shanthraj, J.D. Robson, M. Diehl, S. Dong, J. Dong, W. Ding, D. Raabe, On the interaction of precipitates and tensile twins in magnesium alloys, Acta Mater. 178 (2019) 146–162.

[23] E. Miyoshi, T. Takaki, Y. Shibuta, M. Ohno, Bridging molecular dynamics and phase-field methods for grain growth prediction, Comp. Mater. Sci. 152 (2018) 118–124.

[24] O. Shchyglo, T. Hammerschmidt, M. Čak, R. Drautz, I. Steinbach, Atomistically informed extended Gibbs energy description for phase-field simulation of tempering of martensitic steel, Materials 9 (2016) 1–9.

[25] S. Kavousi, B.R. Novak, M.A. Zaeem, D. Moldovan, Combined molecular dynamics and phase field simulation investigations of crystal-melt interfacial properties and dendritic solidification of highly undercooled titanium, Comput. Mater. Sci. 163 (2019) 218–229.

[26] J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, Oxford, 2002.

[27] A. Ishii, J. Li, S. Ogata, Shuffling-controlled versus strain-controlled deformation twinning: The case for HCP Mg twin nucleation, Inter. J. Plas. 82 (2016) 32–43.

[28] P. Cao, M.P. Short, S. Yip, Understanding the mechanisms of amorphous creep through molecular simulation, Proc. Nat. Aca. Sci. 114 (2017) 13631–13636.

[29] T. Ezaz, H. Sehitoglu, Coupled shear and shuffle modes during twin growth in B2- NiTi, Appl. Phys. Lett. 98 (2011) 241906 .

[30] H. El Kadiri, C.D. Barrett, M.A. Tschopp, The candidacy of shuffle and shear during compound twinning in hexagonal close-packed structures, Acta Mater. 61 (2013) 7646–7659.

[31] A.S.K. Mohammed, H. Sehitoglu, Modeling the interface structure of type II twin boundary in B19’ NiTi from an atomistic and topological standpoint, Acta Mater. 183 (2020) 93–109.

[32] A.S.K. Mohammed, H. Sehitoglu, Martensitic twin boundary migration as a source of irreversible slip in shape memory alloys, Acta Mater. 186 (2020) 50–67.

[33] P. Zhao, C. Shen, J. Li, Y. Wang, Effect of nonlinear and noncollinear transformation strain pathways in phase-field modeling of nucleation and growth during martensite transformation, npj Comp, Mater. 3 (2017) 1–10.

[34] H. Babaei, V.I. Levitas, Phase-field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part 2. Simulations of phase transformations Si I Si II, Int. J. Plas. 107 (2018) 223–245.

[35] V.I. Levitas, Phase field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part I. General theory, Int. J. Plas. 106 (2018) 164–185.

[36] H. Babaei, V.I. Levitas, Effect of 60 dislocation on transformation stresses, nu- cleation, and growth for phase transformations between silicon I and silicon II under triaxial loading: Phase-field study, Acta Mater. 177 (2019) 178–186.

[37] B. Xu, G. Kang, Q. Kan, C. Yu, X. Xie, Phase field simulation on the cyclic degen- eration of one-way shape memory effect of NiTi shape memory alloy single crystal, Inter. J. Mech. Sci. 168 (2020) 105303 .

[38] X.-Z. Tang, Q. Zu, Y.-F. Guo, The diffusive character of extension twin boundary migration in magnesium, Materialia 2 (2018) 208–213.

[39] J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258–267.

[40] I. Steinbach, F. Pezzolla, A generalized field method for multiphase transformations using interface fields, Physica D: Nonlinear Phenomena 134 (1999) 385–393.

[41] L.Q. Chen, W. Yang, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Phys. Rev. B 50 (1994) 15752–15756.

[42] P. Zhao, J. Li, Y. Wang, Heterogeneously randomized STZ model of metallic glasses: Softening and extreme value statistics during deformation, Inter. J. Plas. 40 (2013) 1–22.

[43] P. Zhao, J. Li, Y. Wang, Extended defects, ideal strength and actual strengths of finite-sized metallic glasses, Acta Mater. 73 (2014) 149–166.

[44] T. Mura, Micromechanics of Defects in Solids, Springer Science & Business Media, 2013.

[45] J. Wang, J. Li, S. Yip, S. Phillpot, D. Wolf, Mechanical instabilities of homogeneous crystals, Phys. Rev. B 52 (1995) 12627–12635.

[46] M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Trans. A 12A (1981) 409–418.

[47] H. Yoshinaga, R. Horiuchi, On the nonbasal slip in magnesium crystals, Trans. J. Inst. Metals 5 (1963) 14–21.

[48] A. Chapuis, J.H. Driver, Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals, Acta Mater. 59 (2011) 1986–1994.

[49] J. Wang, S.K. Yadav, J.P. Hirth, C.N. Tomé, I.J. Beyerlein, Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals, Mater. Res. Lett. 1 (2013) 126–132.

[50] A. Ostapovets, P. Molnár, On the relationship between the “shuffling-dominated” and “shear-dominated” mechanisms for twinning in magnesium, Scr. Mater. 69 (2013) 287–290.

[51] A. Ostapovets, R. Gröger, Twinning disconnections and basal-prismatic twin boundary in magnesium, Modell. Simu. Mater. Sci. Eng. 22 (2014) 025015 .

[52] C.D. Barrett, H. El Kadiri, Impact of deformation faceting on {101¯2}, {101¯1} and {101¯3} embryonic twin nucleation in hexagonal close-packed metals, Acta Mater. 70 (2014) 137–161.

[53] N. Zhou, G. Zhang, T.F. Guo, X. Guo, S. Tang, X. Huang, Twin nucleation at pris- matic/basal boundary in hexagonal close-packed metals, Phil. Mag. 99 (2019) 2584–2603.

[54] G. Zhou, L. Ye, H. Wang, D. Xu, C. Meng, R. Yang, Energy paths of twin-related lattice reorientation in hexagonal metals via ab initio calculations, J. Mater. Sci. Tech. 34 (2017) 700–707.

[55] A. Kumar, J. Wang, C.N. Tomé, First-principles study of energy and atomic solu- bility of twinning-associated boundaries in hexagonal metals, Acta Mater. 85 (2015) 144–154.

[56] Z. Pei, X. Zhang, T. Hickel, M. Friák, S. Sandlöbes, B. Dutta, J. Neugebauer, Atomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on Mg, NPJ Comput. Mater. 3 (2017) 1–6.

[57] L. Leclercq, L. Capolungo, D. Rodney, Atomic-Scale Comparison Between {1¯101} and {1¯102} Twin Growth Mechanisms in Magnesium, Mater. Res. Lett. 2 (2014) 152–154.

[58] O. Mackain, M. Cottura, D. Rodney, E. Clouet, Atomic-scale modeling of twinning disconnections in zirconium, Phys. Rev. B 95 (2017) 134102 .

[59] B. Li, X. Zhang, Global strain generated by shuffling-dominated twinning, Scr. Mater. 71 (2014) 45–48.

[60] J. Li, AtomEye: An efficient atomistic configuration viewer, Modell. Simu. Mater. Sci. Eng. 11 (2003) 173–177.

[61] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy cal- culations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–11186.

[62] J.P. Perdew, J.A. Chevary, S.H. Vosko, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correla- tion, Phys. Rev. B 46 (1992) 6671–6687.

[63] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented- wave method, Phys. Rev. B 59 (1999) 11–19.

[64] P. Pulay, Convergence acceleration of iterative sequences. The case of SCF iteration, Chem. Phys. Lett. 73 (1980) 393–398.

[65] Y. Nie, Y. Xie, Ab initio thermodynamics of the hcp metals Mg, Ti, and Zr, Phys. Rev. B 75 (2007) 174117 .

[66] S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, D. Raabe, The relation between ductility and stacking fault energies in Mg and Mg-Y alloys, Acta Mater. 60 (2012) 3011–3021.

[67] S. Ogata, J. Li, N. Hirosaki, Y. Shibutani, S. Yip, Ideal shear strain of metals and ceramics, Phys. Rev. B 70 (2004) 104104 .

[68] L.J. Slutsky, C.W. Garland, Elastic constants of magnesium from 4.2°K to 300°K, Phys. Rev. 107 (1957) 972–976.

[69] S. Ogata, J. Li, S. Yip, Energy landscape of deformation twinning in bcc and fcc metals, Phys. Rev. B 71 (2005) 224102 .

[70] H. Jonsson, G. Mills, K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in: B.J. Berne, G. Ciccotti, D.F. Coker (Eds.), Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific, Singapore, 1998.

[71] J.E. Sinclair, P.C. Gehlen, R.G. Hoagland, J.P. Hirth, Flexible boundary conditions and nonlinear geometric effects in atomic dislocation modeling, J. Appl. Phys. 49 (1978) 3890–3897.

[72] X. Li, Efficient boundary conditions for molecular statics models of solids, Phys. Rev. B 80 (2009) 104112 .

[73] Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, A.M. Minor, The nanostructured origin of deformation twinning, Nano lett. 12 (2012) 887–892.

[74] B. Liu, J. Wang, B. Li, L. Lu, X. Zhang, Z. Shan, J. Li, C. Jia, J. Sun, E. Ma, Twinning- like lattice reorientation without a crystallographic twinning plane, Nat. Commun. 5 (2014) 3297.

[75] B.M. Morrow, R.J. McCabe, E.K. Cerreta, C.N. Tomé, Observations of the atomic structure of tensile and compressive twin boundaries and twin-twin interactions in zirconium, Metall. Mater. Trans. A 45 (2014) 5891–5897.

[76] Y. Shibuta, S. Sakane, E. Miyoshi, S. Okita, T. Takaki, M. Ohno, Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of so- lidification of pure metal, Nat. Commun. 8 (2017) 1–10.

[77] J.S. Koehler, F. Seitz, W.T. Read JR, W. Shockley, E. Orowan, Dislocations in Metals, AIME, New York, 1954.

[78] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science 304 (2004) 422–426.

[79] X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature 464 (2010) 877–880.

[80] D. Trinkle, R. Hennig, S. Srinivasan, D. Hatch, M. Jones, H. Stokes, R. Albers, J. Wilkins, New mechanism for the to martensitic transformation in pure ti- tanium, Phys. Rev. Lett. 91 (2003) 1–4 025701.

[81] X.S. Yang, S. Sun, H.H. Ruan, S.Q. Shi, T.Y. Zhang, Shear and shuffling accom- plishing polymorphic fcc hcp bct martensitic phase transformation, Acta Mater. 136 (2017) 347–354.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る