リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Clear evidence for element partitioning effects in a Ti–6Al–4V alloy by the first-principles phase field method」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Clear evidence for element partitioning effects in a Ti–6Al–4V alloy by the first-principles phase field method

Thi Nu Pham Kaoru Ohno 40185343 Ryoji Sahara 30323075 Riichi Kuwahara Swastibrata Bhattacharyya 横浜国立大学

2020.03.31

概要

Ti–6 wt% Al–4 wt% V (Ti64) is an α + β titanium alloy, in which the alloying components strongly affect the mechanical properties. In this report, element partitioning effects in Ti64 are investigated by using the first-principles phase field (FPPF) method, which has recently been proposed by our group. In the FPPF method, the local free energy is calculated using a cluster expansion method in combination with density functional theory and the temperature effect is incorporated using potential renormalization theory. We have succeeded in identifying enrichment of Al (V) in the α (β) phase, i.e., the clear evidence for the element partitioning effects of Al and V, without using any thermodynamical parameter. The transformation of the β phase and the α phase in microstructure is investigated by varying the V and Al concentrations by a small amount. Our results are in excellent agreement with the recent experimental results, showing the validity of the FPPF method for ternary alloys.

参考文献

[1] T. Seshacharyulu, S. C. Medeiros, W. G. Frazier, and Y. V. R. K. Prasad. Microstructural

mechanisms during hot working of commercial grade ti–6al–4v with lamellar starting structure.

Materials Science and Engineering: A, 325(1):112 – 125, 2002.

[2] R. Boyer, G. Welsch, and E. W. Collings. Materials Properties Handbook: Titanium Alloys. ASM

International, 1994.

[3] S. M. C. van Bohemen, A. Kamp, R. H. Petrov, L. A. I. Kestens, and J. Sietsma. Nucleation

and variant selection of secondary α plates in a β ti alloy. Acta Materialia, 56(20):5907 – 5914,

2008.

[4] D. Wang, R. Shi, Y. Zheng, R. Banerjee, H. L. Fraser, and Y. Wang. Integrated computational

materials engineering (icme) approach to design of novel microstructures for ti-alloys. JOM,

66(7):1287–1298, May 2014.

[5] S. L. Semiatin, T. M. Brown, T. A. Goff, R. E. Fagin, P. N.and Turner, J. M. Murry, D. R. Barker,

Evidence for element partitioning effects in Ti64 by FPPF method

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

14

J. D. Miller, and F. Zhang. Diffusion coefficients for modeling the heat treatment of ti-6al-4v.

Metallurgical and Materials Transactions A, 35(9):3015–3018, Sep 2004.

R. Ding and Z. X. Guo. Microstructural evoluion of a ti-6al-4v alloy during beta-phase processing:

experimental and simulative investigations. Materials Science and Engineering: A, 365:172–179,

Jan 2004.

W. Sha and S. Malinov. Titanium Alloys: Modelling of Microstructure, Properties and

Applications. Woohead Publishing Series in Metals and Surface Engineering. Elsevier, 2009.

G. L¨

utjering. Influence of processing on microstructure and mechanical properties of (α + β)

titanium alloys. Materials Science and Engineering: A, 243(1):32 – 45, 1998.

S. Huang, Y. Ma, J. Qiu, H. Wang, J. Lei, B. Y. Zong, and R. Yang. Enhanced ambient

temperature creep resistance of α/β−ti alloys induced by minor fe. Materials Science and

Engineering: A, 705:169 – 175, 2017.

T. Li, M. Ahmed, G. Sha, R. Shi, G. Casillas, H.-W. Yen, Y. Wang, E. V. Pereloma, and J. M.

Cairney. The influence of partitioning on the growth of intragranular α in near-β ti alloys.

Journal of Alloys and Compounds, 643:212 – 222, 2015.

P. Mengucci, A. Gatto, E. Bassoli, L. Denti, F. Fiori, E. Girardin, P. Bastianoni, B. Rutkowski,

A. Czyrska-Filemonowicz, and G. Barucca. Effects of build orientation and element partitioning

on microstructure and mechanical properties of biomedical ti-6al-4v alloy produced by laser

sintering. Journal of the Mechanical Behavior of Biomedical Materials, 71:1 – 9, 2017.

X. Gao, W. Zeng, S. Zhang, and Q. Wang. A study of epitaxial growth behaviors of equiaxed

alpha phase at different cooling rates in near alpha titanium alloy. Acta Materialia, 122:298 –

309, 2017.

S. Huang, J. Zhang, Y. Ma, S. Zhang, S. S. Youssef, M. Qi, H. Wang, J. Qiu, D. Xu, J.Lei, and

R. Yang. Influence of thermal treatment on element partitioning in (α + β) titanium alloy.

Journal of Alloys and Compounds, 791:575 – 585, 2019.

R. Banerjee, D. Bhattacharyya, P.C Collins, G.B Viswanathan, and H. L. Fraser. Precipitation of

grain boundary α in a laser deposited compositionally graded ti–8al–xv alloy – an orientation

microscopy study. Acta Materialia, 52(2):377 – 385, 2004.

H. Tan, F. Zhang, J. Chen, X. Lin, and W. Huang. Microstructure evolution of laser solid forming

of ti-al-v ternary system alloys from blended elemental powders. Chin. Opt. Lett., 9(5):051403,

May 2011.

J. Zhang, X. Li, D. Xu, and R. Yang. Recent progress in the simulation of microstructure evolution

in titanium alloys. Progress in Natural Science: Materials International, 29:295–304, May 2019.

R. Ding and Z. X. Guo. Coupled quantitative simulation of microstructural evolution and plastic

flow during dynamic recrystallization. Acta Materialia, 49:3163–3175, Sep 2001.

M. P. Anderson, G.S. Grest, and D. J. Srolovitz. Grain growth in three dimensions: A lattice

model. Scripta Metallurgica, 19(2):225 – 230, 1985.

A. D. Rollett, D. J. Srolovitz, R. D. Doherty, and M. P. Anderson. Computer simulation of

recrystallization in non-uniformly deformed metals. Acta Metallurgica, 37(2):627 – 639, 1989.

A. A. Wheeler, W. J. Boettinger, and G. B. McFadden. Phase-field model for isothermal phase

transitions in binary alloys. Phys. Rev. A, 45:7424–7439, May 1992.

L.-Q. Chen. Phase-field models for microstructure evolution. Annual Review of Materials

Research, 32(1):113–140, Aug 2002.

I. Steinbach. Phase-field model for microstructure evolution at the mesoscopic scale. Annual

Review of Materials Research, 43(1):89–107, Jul 2013.

F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, and D. Raabe. Overview of

constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finiteelement modeling: Theory, experiments, applications. Acta Materialia, 58(4):1152 – 1211, 2010.

D. Raabe and F. Roters. Using texture components in crystal plasticity finite element simulations.

International Journal of Plasticity, 20(3):339 – 361, 2004. Owen Richmond Memorial Special

Issue.

Evidence for element partitioning effects in Ti64 by FPPF method

15

[25] S. Bhattacharyya, R. Sahara, and K. Ohno. A first-principles phase field method for quantitatively

predicting multi-composition phase separation without thermodynamic empirical parameter.

Nature Communications, 10(1):3451, 2019.

[26] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871, Nov 1964.

[27] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects.

Phys. Rev., 140:A1133–A1138, Nov 1965.

[28] J. W. D. Connolly and A. R. Williams. Density-functional theory applied to phase transformations

in transition-metal alloys. Phys. Rev. B, 27:5169–5172, Apr 1983.

[29] K. Ohno. Renormalization of interatomic potentials and lattice gas models. Sci. Rep. Res. Inst.

Tohoku Univ. A, 43:17, 1997.

[30] K. Ohno, K. Esfarjani, and Y. Kawazoe. Computational Materials Science: From Ab Initio to

Monte Carlo Methods. Springer Series in Solid-State Sciences. Springer Berlin Heidelberg, 1999.

[31] G. D. Garbulsky and G. Ceder. Linear-programming method for obtaining effective cluster

interactions in alloys from total-energy calculations: Application to the fcc pd-v system. Phys.

Rev. B, 51:67–72, Jan 1995.

[32] G. Ceder, G. D. Garbulsky, and P. D. Tepesch. Convergent real-space cluster expansion for

configurational disorder in ionic systems. Phys. Rev. B, 51:11257–11261, May 1995.

[33] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne.

First principles methods using castep. Zeitschrift f¨

ur Kristallographie - Crystalline Materials,

220:567?570, 2009.

[34] J. P. Perdew. Generalized gradient approximation made simple. Physical Review Letters,

77(18):3865–3868, 1996.

[35] C. Leyens and M. Peters. Titanium and Titanium Alloys: Fundamentals and Applications. Wiley,

2003.

[36] Y.-L. Song, Z.-H. Dou, T.-A. Zhang, Y. Liu, and G.-C. Wang. First-principles calculation on

the structural, elastic and thermodynamic properties of ti-al intermetallics. Materials Research

Express, 6(10):1065a4, Sep 2019.

[37] P.-Y. Tang, B.-Y. Tang, and X.-P. Su.

First-principles studies of typical long-period

superstructures al5ti3, h-al2ti and r-al2ti in al-rich tial alloys. Computational Materials Science,

50(4):1467 – 1476, 2011. Proceedings of the 19th International Workshop on Computational

Mechanics of Materials.

[38] T. Hong, T. J. Watson-Yang, X.-Q. Guo, A. J. Freeman, T. Oguchi, and J.-H Xu. Crystal

structure, phase stability, and electronic structure of ti-al intermetallics: ti3 al. Phys. Rev. B,

43:1940–1947, Jan 1991.

[39] N. Zheng and Y. Jin. Band-gap and slater–pauling rule in half-metallic ti2-based heusler alloys:

A first-principles study. Journal of Magnetism and Magnetic Materials, 324(19):3099 – 3104,

2012.

[40] G. G. E. Seward, S. Celotto, D. J. Prior, J. Wheeler, and R. C. Pond. In situ sem-ebsd observations

of the hcp to bcc phase transformation in commercially pure titanium. Acta Materialia,

52(4):821 – 832, 2004.

[41] S. R. Nishitani, H. Kawabe, and M. Aoki. First-principles calculations on bcc–hcp transition of

titanium. Materials Science and Engineering: A, 312(1):77 – 83, 2001.

[42] E. Alabort, P. Kontis, D. Barba, K. Dragnevski, and R. C. Reed. On the mechanisms of

superplasticity in ti–6al–4v. Acta Materialia, 105:449 – 463, 2016.

...

参考文献をもっと見る