リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hypothermia cannot ameliorate renal fibrosis after asphyxia in the newborn piglet」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hypothermia cannot ameliorate renal fibrosis after asphyxia in the newborn piglet

若林 誉幸 香川大学 DOI:10.1111/ped.14961

2021.12.27

概要

Background: The effects of therapeutic hypothermia (TH) on renal function are not widely reported, especially in longer-term animal models. The hypothesis of this study was that TH of the kidneys of hypoxic-ischemic newborn piglets would reduce pathological renal fibrosis.
Methods: Twenty-five newborn piglets obtained within 24 h of birth were classified into a Control group (n = 5), hypoxic insult with normothermia (HI-NT) group (n = 12), and hypoxic insult with TH (HI-TH) group (33.5°C ± 0.5°C for 24 h; n = 8). Five days after the insult, all piglets were sacrificed under deep anesthesia by isoflurane inhalation. The kidneys were perfused with phosphate-buffered paraformaldehyde and immersed in formalin buffer. Territory fibrosis was studied and scored in the renal medulla using Azan staining.
Results: Fibrosis area scores (mean ± standard deviation) based on Azan staining were 1.00 ± 0.46 in the Control group, 2.85 ± 0.93 in the HI-NT group, and 3.58 ± 1.14 in the HI-TH group. The fibrosis area of the HI-NT and HI-TH groups was larger than that of the Control. The HI-NT and HI-TH groups were not statistically different.
Conclusion: Renal fibrosis is affected by perinatal asphyxia and cannot be prevented by TH, based on histopathological findings.

この論文で使われている画像

参考文献

1. Durkan AM, Alexander RT. Acute kidney injury post neonatal asphyxia. J. Pediatr. 2011; 158 (2 Suppl): e29-33.

2. Aggarwal A, Kumar P, Chowdhary G, Majumdar S, Narang A. Evaluation of renal functions in asphyxiated newborns. J. Trop. Pediatr. 2005; 51:295-299.

3. Kaur S, Jain S, Saha A, et al. Evaluation of glomerular and tubular renal function in neonates with birth asphyxia. Ann. Trop. Paediatr. 2011;31:129-134.

4. Sweetman DU, Riordan M, Molloy EJ. Management of renal dysfunction following term perinatal hypoxia-ischaemia. Acta Paediatr. 2013; 102: 233-41.

5. Selewski DT, Jordan BK, Askenazi DJ, Dechert RE, Sarkar S. Acute kidney injury in asphyxiated newborns treated with therapeutic hypothermia. J. Pediatr. 2013; 162: 725-729.

6. Perlman JM, Tack ED. Renal injury in the asphyxiated newborn infant: relationship to neurologic outcome. J. Pediatr. 1988; 113: 875-879.

7. Martin-Ancel A, Garcia-Alix A, Gaya F, Cabanas F, Burgueros M, Quero J. Multiple organ involvement in perinatal asphyxia. J. Pediatr. 127:786-793.

8. Sarkar S, Askenazi DJ, Jordan BK, et al. Relationship between acute kidney injury and brain MRI findings in asphyxiated newborns after therapeutic hypothermia. Pediatr. Res. 2014; 75:431-435.

9. Sweetman DU, Onwuneme C, Watson WR, ONeill A, Murphy JF, Molloy EJ. Renal function and novel urinary biomarkers in infants with neonatal encephalopathy. Acta Paediatr. 2016; 105:e513-e519.

10. Gupta C, Massaro AN, Ray PE. A new approach to define acute kidney injury in term newborns with hypoxic ischemic encephalopathy. Pediatr Nephrol. 2016; 31:1167-78.

11. van Wincoop M, de Bijl-Marcus K, Lilien M, van den Hoogen A, Groenendaal F. Effect of therapeutic hypothermia on renal and myocardial function in asphyxiated (near) term

21. Amess PN, Penrice J, Howard S, et al. Organ pathology following mild hypothermia used as neural rescue therapy in newborn piglets. Biol. Neonate. 1998; 73: 40-6.

22. Satas S, Loberg EM, Porter H, Whitelaw A, Steen PA, Thoresen M. Effect of global hypoxia-ischaemia followed by 24 h of mild hypothermia on organ pathology and biochemistry in a newborn pig survival model. Biol. Neonate 2003; 83:146-156.

23. Stojanovic V, Vuckovic N, Spasojevic S, Barisic N, Doronjski A, Zikic D. The influence of EPO and hypothermia on the kidneys of rats after perinatal asphyxia. Pediatr. Nephrol. 2012; 27:139-44.

24. Stojanovic VD, Vesna D Stojanovic VD, Vuckovic NM, Barisic NA, Srdic B, Doronjski AD, Peco Antic AE. Early biomarkers of renal injury and protective effect of erythropoietin on kidneys of asphyxiated newborn rats. Pediatr. Res. 2014; 76:11-16.

25. Nakamura S, Kusaka T, Yasuda S, et al. Cerebral blood volume combined with amplitude- integrated EEG can be a suitable guide to control hypoxic/ischemic insult in a piglet model. Brain Dev. 2013; 35: 614-625.

26. Nakamura S, Kusaka T, Koyano K, et al. Relationship between early changes in cerebral blood volume and electrocortical activity after hypoxic-ischemic insult in newborn piglets. Brain. Dev. 2014; 36: 563-571.

27. Nakamura M, Jinnai W, Hamano S, et al. Cerebral blood volume measurement using near-infrared time-resolved spectroscopy and histopathological evaluation after hypoxic- ischemic insult in newborn piglets. Int. J. Dev. Neurosci. 2015; 42:1-9.

28 Jinnai W, Nakamura S, Koyano K, et al. Relationship between prolonged neural suppression and cerebral hemodynamic dysfunction during hypothermia in asphyxiated piglets. Brain Dev. 2018; 40: 649-661.

29 Kubo H, Shimono R, Nakamura S, et al. Hypoxic-ischemic encephalopathy-associated liver fatty degeneration and the effects of therapeutic hypothermia in newborn piglets.

参考文献をもっと見る