リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「炭素質コンドライト中のヒドロキシアミノ酸とその生成メカニズム」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

炭素質コンドライト中のヒドロキシアミノ酸とその生成メカニズム

古賀, 俊貴 KOGA, Toshiki コガ, トシキ 九州大学

2021.03.24

概要

Carbonaceous chondrites contain a variety of extraterrestrial amino acids, which were formed throughout the processes from the interstellar medium to the meteorite parent body. The abiotically synthesized amino acids can provide us information for understanding the chemical evolution of biological-related compounds and possibly the emergence of life on the early Earth. The molecular distributions and enantiomeric excesses of meteoritic amino acids have been thoroughly investigated in various types of carbonaceous chondrites over half a century. Recently, a family of C3 and C4 hydroxy amino acids (HAAs) was newly identified in the CM2 Murchison meteorite. However, the distributions and enantiomeric compositions of HAAs remained unknown in other carbonaceous chondrites.

This thesis consists of three chapters, as followed.

Chapter 1: The abundances, distributions, and enantiomeric ratios of C3 and C4 HAAs were investigated in five CM chondrites and four CR chondrites by gas chromatography/mass spectrometry (GC-MS) analyses. A new GC-MS analytical technique was developed to be capable of analyzing 13 different HAAs in a single run. The HAA analyses performed in this study revealed that 1) the petrographic type CR2 chondrites contained greater abundances of α-HAAs than CM chondrites and 2) the hot water and HCl extracts of CM and CR chondrites contained roughly similar ranges of abundances of β- and γ-HAAs. Application of the GC-MS method developed here resulted in the first successful chromatographic resolution of the enantiomers of an α- dialkyl HAA, D,L-α-methylserine, in carbonaceous chondrites. Meteoritic α- methylserine was found to be mostly racemic within error and did not show L- enantiomeric excesses correlating with the degree of aqueous alteration, a phenomenon observed in meteoritic isovaline, another α-dialkyl amino acid. It is considered that HAAs in CM and CR chondrites could have been produced from the Strecker cyanohydrin reaction (for α-HAAs) and an ammonia-involved formose-like reaction (for β-, and γ- HAAs).

In Chapter 2, an amino acid synthesis experiment from glycolaldehyde and ammonia was performed to reveal amino acid formation pathways by the ammonia- involved formose-like reaction. This experiment was conducted under air or nitrogen atmosphere to evaluate the effects of free oxygen for the amino acid synthesis in the reaction. The reaction products were analyzed by GC/MS to compare the distributions of synthesized organic compounds between the different conditions. As a result, oxygen in the air promoted the syntheses of amino acids and sugar acids, indicating oxidation was involved in their formation mechanisms. A precursor compound of glycine was identified as N-oxalylglycine that can be synthesized from ammonia and glyoxylic acid, which was produced by glycolaldehyde oxidation. The formation mechanism of glycine in this experiment could be generalized as the reaction of an oxoacid and ammonia; thus, it can be hypothesized that the reactions of α-, β-, and γ-oxo acids with ammonia could produce various structural isomers of amino acids, including α-, β-, and γ-HAAs.

In Chapter 3, the results and discussion obtained from the amino acid synthesis experiments were compared with the HAA distributions of the CM and CR chondrites and observations in the previous studies. This study suggests that the ammonia-involved formose-like reaction could complement previously proposed formation mechanisms such as the Strecker-cyanohydrin reaction to explain the distribution of meteoritic HAAs.

この論文で使われている画像

参考文献

Alexander C. M. O. D., Howard K. T., Bowden R., and Fogel M. L. 2013. The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions. Geochimica et Cosmochimica Acta 123:244–260.

Aponte J. C., Elsila J. E., Glavin D. P., Milam S. N., Charnley S. B., and Dworkin J. P.2017. Pathways to Meteoritic Glycine and Methylamine. ACS Earth and Space Chemistry 1:3–13.

Bada J. L., Glavin D. P., McDonald G. D., and Becker L. 1998. A Search for Endogenous Amino Acids in Martian Meteorite ALH84001. Science 279:362–365.

Baker L., Franchi I. A., Wright I. P., and Pillinger C. T. 2002. The oxygen isotopic composition of water from Tagish Lake: Its relationship to low-temperature phases and to other carbonaceous chondrites. Meteoritics & Planetary Science 37:977– 985.

Bieler A. et al. 2015. Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature 526:678–681.

Bisschop S. E., Jørgensen J. K., Bourke T. L., Bottinelli S., and van Dishoeck E. F.2008. An interferometric study of the low-mass protostar IRAS 16293-2422: small scale organic chemistry. Astronomy & Astrophysics 488:959–968.

Biver N. et al. 2015. Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy). Science Advances 1:e1500863.

Botta O., and Bada J. L. 2002. Extraterrestrial organic compounds in meteorites.Surveys in Geophysics 23:411–467.

Breslow R. 1959. On the mechanism of the formose reaction. Tetrahedron Letters 1:22– 26.

Chimiak L., Elsila J. E., Dallas B., Dworkin J. P., Aponte J. C., Sessions A. L., and Eiler J. M. 2021. Carbon isotope evidence for the substrates and mechanisms of prebiotic synthesis in the early solar system. Geochimica et Cosmochimica Acta 292:188–202.

Chyba C., and Sagan C. 1992. Endogenous production, exogenous delivery and impact- shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132.

Cooper G. W., and Cronin J. R. 1995. Linear and cyclic aliphatic carboxamides of the Murchison meteorite: Hydrolyzable derivatives of amino acids and other carboxylic acids. Geochimica et Cosmochimica Acta 59:1003–1015.

Cooper G., Reed C., Nguyen D., Carter M., and Wang Y. 2011. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites. Proceedings of the National Academy of Sciences 108:14015–14020.

Cooper G., and Rios A. C. 2016. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites. Proceedings of the National Academy of Sciences 113:E3322–E3331.

Ehrenfreund P., and Charnley S. B. 2000. Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth. Annual Review of Astronomy and Astrophysics 38:427–483.

Ehrenfreund P., Glavin D. P., Botta O., Cooper G., and Bada J. L. 2001. Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites. Proceedings of the National Academy of Sciences of the United States of America 98:2138–2141.

Elsila J. E., Charnley S. B., Burton A. S., Glavin D. P., and Dworkin J. P. 2012.Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways. Meteoritics and Planetary Science 47:1517–1536.

Elsila J. E., Aponte J. C., Blackmond D. G., Burton A. S., Dworkin J. P., and Glavin D.P. 2016. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories. ACS Central Science 2:370–379.

Engel M. H., and Nagy B. 1982. Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature 296:837–840.

Furukawa Y., Chikaraishi Y., Ohkouchi N., Ogawa N. O., Glavin D. P., Dworkin J. P., Abe C., and Nakamura T. 2019. Extraterrestrial ribose and other sugars in primitive meteorites. Proceedings of the National Academy of Sciences 116:24440–24445.

Glavin D. P., Bada J. L., Brinton K. L. F., and McDonald G. D. 1999. Amino acids in the Martian meteorite Nakhla. Proceedings of the National Academy of Sciences 96:8835–8838.

Glavin D. P., Dworkin J. P., Aubrey A., Botta O., Doty J. H., Martins Z., and Bada J. L.2006. Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry. Meteoritics and Planetary Science 41:889–902.

Glavin D. P., and Dworkin J. P. 2009. Enrichment of the amino acid L-isovaline by aqueous alteration on Cl and CM meteorite parent bodies. Proceedings of the National Academy of Sciences of the United States of America 106:5487–5492.

Glavin D. P., Callahan M. P., Dworkin J. P., and Elsila J. E. 2010. The effects of parent body processes on amino acids in carbonaceous chondrites. Meteoritics and Planetary Science 45:1948–1972.

Glavin D. P., Alexander C. M. O., Aponte J. C., Dworkin J. P., Elsila J. E., and Yabuta H. 2018. The Origin and Evolution of Organic Matter in Carbonaceous Chondrites and Links to Their Parent Bodies. In Primitive Meteorites and Asteroids. Elsevier.pp. 205–271.

Glavin D. P. et al. 2020a. Abundant extraterrestrial amino acids in the primitive CM carbonaceous chondrite Asuka 12236. Meteoritics & Planetary Science 28:maps.13560.

Glavin D. P., Elsila J. E., McLain H. L., Aponte J. C., Parker E. T., Dworkin J. P., Hill D. H., Connolly H. C., and Lauretta D. S. 2020b. Extraterrestrial amino acids and L-enantiomeric excesses in the CM2 carbonaceous chondrites Aguas Zarcas and Murchison. Meteoritics & Planetary Science 26:1–26.

Gligorovski S., Strekowski R., Barbati S., and Vione D. 2015. Environmental Implications of Hydroxyl Radicals ( • OH). Chemical Reviews 115:13051–13092.Le Guillou C., Bernard S., Brearley A. J., and Remusat L. 2014. Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations. Geochimica et Cosmochimica Acta 131:368–392.

Guo W., and Eiler J. M. 2007. Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta 71:5565–5575.

Harju E. R., Rubin A. E., Ahn I., Choi B.-G., Ziegler K., and Wasson J. T. 2014.Progressive aqueous alteration of CR carbonaceous chondrites. Geochimica et Cosmochimica Acta 139:267–292.

Howard K. T., Alexander C. M. O. D., Schrader D. L., and Dyl K. A. 2015.Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments.Geochimica et Cosmochimica Acta 149:206–222.

Kawasaki T., Hatase K., Fujii Y., Jo K., Soai K., and Pizzarello S. 2006. The distribution of chiral asymmetry in meteorites: An investigation using asymmetric autocatalytic chiral sensors. Geochimica et Cosmochimica Acta 70:5395–5402.

Kebukawa Y., David Kilcoyne A. L., and Cody G. D. 2013. Exploring the potential formation of organic solids in chondrites and comets through polymerization of interstellar formaldehyde. The Astrophysical Journal 771:19.

Kebukawa Y., Chan Q. H. S., Tachibana S., Kobayashi K., and Zolensky M. E. 2017.One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity. Science Advances 3:e1602093.

Kebukawa Y., Nakashima S., Mita H., Muramatsu Y., and Kobayashi K. 2020. Molecular evolution during hydrothermal reactions from formaldehyde and ammonia simulating aqueous alteration in meteorite parent bodies. Icarus 347:113827.

Kimura M., Grossman J. N., and Weiserg M. K. 2011. Fe-Ni metal and sulfide minerals in CM chondrites: An indicator for thermal history. Meteoritics & Planetary Science 46:431–442.

Koga T., and Naraoka H. 2017. A new family of extraterrestrial amino acids in the Murchison meteorite. Scientific Reports 7:1–8.

Kvenvolden K. A., Lawless J. G., and Ponnamperuma C. 1971. Nonprotein Amino Acids in the Murchison Meteorite. Proceedings of the National Academy of Sciences 68:486–490.

Lerner N. R., Peterson E., and Chang S. 1993. The Strecker synthesis as a source of amino acids in carbonaceous chondrites: Deuterium retention during synthesis. Geochimica et Cosmochimica Acta 57:4713–4723.

Lerner N. R., and Cooper G. W. 2005. Iminodicarboxylic acids in the Murchison meteorite: Evidence of Strecker reactions. Geochimica et Cosmochimica Acta 69:2901–2906.

Martins Z., Modica P., Zanda B., and D’Hendecourt L. L. S. 2015. The amino acid and hydrocarbon contents of the Paris meteorite: Insights into the most primitive CM chondrite. Meteoritics & Planetary Science 50:926–943.

Matsuo Y., and Greenberg D. M. 1955. Metabolic formation of homoserine and alpha- aminobutyric acid from methionine. The Journal of biological chemistry 215:547– 54.

Naraoka H., and Hashiguchi M. 2019. Distinct distribution of soluble N-heterocyclic compounds between CM and CR chondrites. Geochemical Journal 53:33–40.

Öberg K. I., Garrod R. T., van Dishoeck E. F., and Linnartz H. 2009. Formation rates of complex organics in UV irradiated CH 3 OH-rich ices. Astronomy & Astrophysics 504:891–913.

Orthous-Daunay F.-R., Quirico E., Lemelle L., Beck P., DeAndrade V., Simionovici A., and Derenne S. 2010. Speciation of sulfur in the insoluble organic matter from carbonaceous chondrites by XANES spectroscopy. Earth and Planetary Science Letters 300:321–328.

Peltzer E. T., and Bada J. L. 1978. α-Hydroxycarboxylic acids in the Murchison meteorite. Nature 272:443–444.

Peltzer E. T., Bada J. L., Schlesinger G., and Miller S. L. 1984. The chemical conditions on the parent body of the murchison meteorite: Some conclusions based on amino, hydroxy and dicarboxylic acids. Advances in Space Research 4:69–74.

Pizzarello, S.; Cooper, G. W.; Flynn G. J. 2006. The Nature and Distribution of the Organic Material in Carbonaceous Chondrites and Interplanetary Dust Particles. Meteorites and the Early Solar System II (Lauretta, D. S. and McSween, H. Y. Jr., Eds.), Univ. Arizona Press, Tucson, 625–651.

Pizzarello S., Zolensky M., and Turk K. A. 2003. Nonracemic isovaline in the Murchison meteorite: Chiral distribution and mineral association. Geochimica et Cosmochimica Acta 67:1589–1595.

Pizzarello S., Huang Y., and Fuller M. 2004. The carbon isotopic distribution of Murchison amino acids. Geochimica et Cosmochimica Acta 68:4963–4969.

Pizzarello S., and Huang Y. 2005. The deuterium enrichment of individual amino acids in carbonaceous meteorites: A case for the presolar distribution of biomolecule precursors. Geochimica et Cosmochimica Acta 69:599–605.

Pizzarello S., Huang Y., and Alexandre M. R. 2008. Molecular asymmetry in extraterrestrial chemistry: Insights from a pristine meteorite. Proceedings of the National Academy of Sciences 105:3700–3704.

Pizzarello S., Wang Y., and Chaban G. M. 2010. A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites. Geochimica et Cosmochimica Acta 74:6206–6217.

Pizzarello S., Williams L. B., Lehman J., Holland G. P., and Yarger J. L. 2011.Abundant ammonia in primitive asteroids and the case for a possible exobiology.

Proceedings of the National Academy of Sciences 108:4303–4306.

Pizzarello S., Schrader D. L., Monroe A. A., and Lauretta D. S. 2012. Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proceedings of the National Academy of Sciences of the United States of America 109:11949–11954.

Pollock G. E., Cheng C.-N., Cronin S. E., and Kvenvolden K. A. 1975. Stereoisomers of isovaline in the Murchison meteorite. Geochimica et Cosmochimica Acta 39:1571–1573.

Simkus D. N., Aponte J. C., Elsila J. E., Parker E. T., Glavin D. P., and Dworkin J. P.2019. Methodologies for Analyzing Soluble Organic Compounds in Extraterrestrial Samples: Amino Acids, Amines, Monocarboxylic Acids, Aldehydes, and Ketones. Life 9:47.

Smith K. E., House C. H., Arevalo R. D., Dworkin J. P., and Callahan M. P. 2019. Organometallic compounds as carriers of extraterrestrial cyanide in primitive meteorites. Nature Communications 10:1–7.

Vollmer C., Pelka M., Leitner J., and Janssen A. 2020. Amorphous silicates as a record of solar nebular and parent body processes—A transmission electron microscope study of fine‐grained rims and matrix in three Antarctic CR chondrites.Meteoritics & Planetary Science 18:maps.13526.

Weisberg M. K., McCoy T. J., and Krot A. N. 2006. Systematics and Evaluation of Meteorite Classification. Meteorites and the Early Solar System II (Lauretta, D. S. and McSween, H. Y. Jr., Eds.), Univ. Arizona Press, Tucson, 19–52.

Yanagawa H., Makino Y., Sato K., Nishizawa M., and Egami F. 1982. Novel Formation of α-Amino Acids and Their Derivatives from Oxo Acids and Ammonia in an Aqueous Medium. The Journal of Biochemistry 91:2087–2090.

Yanagawa H., Makino Y., Sato K., Nishizawa M., and Egami F. 1984. Novel formation of α-amino acid from α-oxo acids and ammonia in an aqueous medium. Origins of Life and Evolution of Biospheres 14:163–169.

Zhou Y., Quan D., Zhang X., and Qin S. 2020. Detection of hydroxyacetone in protostar IRAS 16293 – 2422 B ∗. Research in Astronomy and Astrophisicis.

参考文献をもっと見る