リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「高血圧と血管内皮依存性過分極(EDH)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

高血圧と血管内皮依存性過分極(EDH)

後藤, 健一 GOTO, Kenichi ゴトウ, ケンイチ 九州大学 DOI:https://doi.org/10.15017/4371062

2020.12.25

概要

Hypertension is one of the major risk factors for cardiovascular disease. While endothelium-derived nitric oxide is a major vasodilator in large-size vessels, endothelium-dependent hyperpolarization (

この論文で使われている画像

参考文献

1)

2)

3)

4)

5)

6)

7)

Furchgott RF and Zawadzki JV : The obligatory role of endothelial cells in the relaxation of arterial smooth

muscle by acetylcholine. Nature. 288 : 373-376, 1980.

Bolton TB, Lang RJ and Takewaki T : Mechanisms of action of noradrenaline and carbachol on smooth muscle

of guinea-pig anterior mesenteric artery. J Physiol. 351 : 549-572, 1984.

Chen G, Suzuki H and Weston AH : Acetylcholine releases endothelium - derived hyperpolarizing factor and

EDRF from rat blood vessels. Br J Pharmacol. 95 : 1165-1174, 1988.

Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM and Weston AH : EDHF : Bringing the concepts

together. Trends Pharmacol Sci. 23 : 374-380, 2002.

Chaytor AT, Evans WH and Griffith TM : Central role of heterocellular gap junctional communication in

endothelium-dependent relaxations of rabbit arteries. J Physiol. 508 : 561-573, 1998.

Yamamoto Y, Imaeda K and Suzuki H : Endothelium-dependent hyperpolarization and intercellular electrical

coupling in guinea-pig mesenteric arterioles. J Physiol. 514 : 505-513, 1999.

Sandow SL and Hill CE : Incidence of myoendothelial gap junctions in the proximal and distal mesenteric

arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor‒mediated responses.

148

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

Circ Res. 86 : 341-346, 2000.

Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K,

Fujishima M and Takeshita A : The importance of the hyperpolarizing mechanism increases as the vessel size

decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol. 28 :

703-711, 1996.

Coleman HA, Tare M and Parkington HC : K+ currents underlying the action of endothelium-derived

hyperpolarizing factor in guinea-pig, rat and human blood vessels. J Physiol. 531 : 359-373, 2001.

Goto K, Fujii K, Kansui Y, Abe I and Iida M : Critical role of gap junctions in endothelium-dependent

hyperpolarization in rat mesenteric arteries. Clin Exp Pharmacol Physiol. 29 : 595-602, 2002.

Dora KA, Sandow SL, Gallagher NT, Takano H, Rummery NM, Hill CE and Garland CJ : Myoendothelial gap

junctions may provide the pathway for EDHF in mouse mesenteric artery. J Vasc Res. 40 : 480-490, 2003.

Garland CJ and Dora KA : EDH : endothelium-dependent hyperpolarization and microvascular signalling.

Acta Physiol. 219 : 152-161, 2017.

Goto K, Ohtsubo T and Kitazono T : Endothelium-dependent hyperpolarization (EDH) in hypertension : the

role of endothelial ion channels. Int J Mol Sci. 19 : 315, 2018.

Sonkusare SK, Bonev AD, Ledoux J, Liedtke M, Kotlikoff MI, Heppner TJ, Hill-Eubanks DC and Nelson MT :

Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science. 336 : 597601, 2012.

Senadheera S, Kim Y, Grayson TH, Toemoe S, Kochukov MY, Abramowitz J, Housley GD, Bertrand RL,

Chadha PS, Bertrand PP, Murphy TV, Tare M, Birnbaumer L, Marrelli SP and Sandow SL : Transient

receptor potential canonical type 3 channels facilitate endothelium-derived hyperpolarization-mediated

resistance artery vasodilator activity. Cardiovasc Res. 95 : 439-447, 2012.

Brähler S, Kaistha A, Schmidt VJ, Wölfle SE, Busch C, Kaistha BP, Kacik M, Hasenau AL, Grgic I, Si H, Bond

CT, Adelman JP, Wulff H, de Wit C, Hoyer J and Köhler R : Genetic deficit of SK3 and IK1 channels disrupts

the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation.

119 : 2323-2332, 2009.

Ottolini M, Hong K, Cope EL, Daneva Z, DeLalio LJ, Sokolowski JD, Marziano C, Nguyen NY, Altschmied J,

Haendeler J, Johnstone SR, Kalani MY, Park MS, Patel RP, Liedtke W, Isakson BE and Sonkusare SK : Local

peroxynitrite impairs endothelial transient receptor potential vanilloid 4 channels and elevates blood pressure

in obesity. Circulation. 141 : 1318-1333, 2020.

Campbell WB and Fleming I : Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers

Arch. 459 : 881-895, 2010.

Goto K, Rummery NM, Grayson TH and Hill CE : Attenuation of conducted vasodilation in rat mesenteric

arteries during hypertension : Role of inwardly rectifying potassium channels. J Physiol. 561 : 215-231, 2004.

Sonkusare SK, Dalsgaard T, Bonev AD and Nelson MT : Inward rectifier potassium (Kir2.1) channels as

end-stage boosters of endothelium-dependent vasodilators. J Physiol. 594 : 3271-3285, 2016.

Fujii K, Tominaga M, Ohmori S, Kobayashi K, Koga T, Takata Y and Fujishima M : Decreased endotheliumdependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously

hypertensive rats. Circulation Research. 70 : 660-669, 1992.

Büssemaker E, Popp R, Fisslthaler B, Larson CM, Fleming I, Busse R and Brandes RP : Aged spontaneously

hypertensive rats exhibit a selective loss of EDHF-mediated relaxation in the renal artery. Hypertension. 42 :

562-568, 2003.

Sofola OA, Knill A, Hainsworth R and Drinkhill M : Change in endothelial function in mesenteric arteries of

Sprague-Dawley rats fed a high salt diet. J Physiol. 543 : 255-260, 2002.

Goto K, Kansui Y, Oniki H, Ohtsubo T, Matsumura K and Kitazono T : Upregulation of endothelium-derived

hyperpolarizing factor compensates for the loss of nitric oxide in mesenteric arteries of dahl salt-sensitive

hypertensive rats. Hypertens Res. 35 : 849-854, 2012.

Goto K, Fujii K, Onaka U, Abe I and Fujishima M : Renin-angiotensin system blockade improves endothelial

dysfunction in hypertension. Hypertension. 36 : 575-580, 2000.

Ellis A, Goto K, Chaston DJ, Brackenbury TD, Meaney KR, Falck JR, Wojcikiewicz RJ and Hill CE : Enalapril

treatment alters the contribution of epoxyeicosatrienoic acids but not gap junctions to endothelium-derived

hyperpolarizing factor activity in mesenteric arteries of spontaneously hypertensive rats. J Pharmacol Exp

Ther. 330 : 413-422, 2009.

高血圧と血管内皮依存性過分極(EDH)

27)

28)

29)

30)

31)

32)

33)

34)

35)

36)

37)

38)

39)

40)

41)

149

Sandow SL, Bramich NJ, Bandi HP, Rummery NM and Hill CE : Structure, function, and endothelium-derived

hyperpolarizing factor in the caudal artery of the SHR and WKY rat. Arterioscler Thromb Vasc Biol. 23 :

822-828, 2003.

Weston AH, Porter EL, Harno E and Edwards G : Impairment of endothelial SK (Ca) channels and of

downstream hyperpolarizing pathways in mesenteric arteries from spontaneously hypertensive rats. Br J

Pharmacol. 160 : 836-843, 2010.

Seki T, Goto K, Kiyohara K, Kansui Y, Murakami N, Haga Y, Ohtsubo T, Matsumura K and Kitazono T :

Downregulation of endothelial transient receptor potential vanilloid type 4 channel and small-conductance of

Ca2+ -activated K+ channels underpins impaired endothelium-dependent hyperpolarization in hypertension.

Hypertension. 69 : 143-153, 2017.

Giachini FRC, Carneiro FS, Lima VV, Carneiro ZN, Dorrance A, Webb RC and Tostes RC : Upregulation of

intermediate calcium-activated potassium channels counterbalance the impaired endothelium-dependent

vasodilation in stroke-prone spontaneously hypertensive rats. Transl Res. 154 : 183-193, 2009.

Boudaka A, Al-Suleimani M, Al-Lawati I, Baomar H, AI-Siyabi S and Zadjali F : Downregulation of

endothelial transient receptor potential vanilloid type 4 channel underlines impaired endothelial nitric

oxide-mediated relaxation in the mesenteric arteries of hypertensive rats. Physiol Res. 68 : 219-231, 2019.

Diaz-Otero JM, Yen TC, Fisher C, Bota D, Jackson WF and Dorrance AM : Mineralocorticoid receptor

antagonism improves parenchymal arteriole dilation via a TRPV4-dependent mechanism and prevents

cognitive dysfunction in hypertension. Am J Physiol Hear Circ Physiol. 315 : H1304-H1315, 2018.

Goto K, Fujii K, Kansui Y and Iida M : Changes in endothelium-derived hyperpolarizing factor in hypertension

and ageing : response to chronic treatment with renin-angiotensin system inhibitors. Clin Exp Pharmacol

Physiol. 31 : 650-655, 2004.

Seki T, Goto K, Kansui Y, Ohtsubo T, Matsumura K and Kitazono T : Angiotensin Ⅱ receptor-neprilysin

inhibitor sacubitril/valsartan improves endothelial dysfunction in spontaneously hypertensive rats. J Am

Heart Assoc. 6 : e006617, 2017.

Albarwani S, Al-Siyabi S, Al-Husseini I, Al-Ismail A, Al-Lawati I, Al-Bahrani I and Tanira MO : Lisinopril

alters contribution of nitric oxide and KCa channels to vasodilatation in small mesenteric arteries of

spontaneously hypertensive rats. Physiol Res. 64 : 39-49, 2015.

More AS, Mishra JS, Hankins GDV, Yallampalli C and Sathishkumar K : Enalapril normalizes endothelium-derived hyperpolarizing factor-mediated relaxation in mesenteric artery of adult hypertensive rats prenatally

exposed to testosterone. Biol Reprod. 92 : 155, 2015.

Bellien J, Thuillez C and Joannides R : Contribution of endothelium-derived hyperpolarizing factors to the

regulation of vascular tone in humans. Fundam Clin Pharmacol. 22 : 363-377, 2008.

Taddei S, Ghiadoni L, Virdis A, Buralli S and Salvetti A : Vasodilation to bradykinin is mediated by an ouabainsensitive pathway as a compensatory mechanism for impaired nitric oxide availability in essential

hypertensive patients. Circulation. 100 : 1400-1405, 1999.

Li J, Zhou Z, Jiang DJ, Li D, Tan B, Liu H and Li YJ : Reduction of NO- and EDHF-mediated vasodilatation in

hypertension : role of asymmetric dimethylarginine. Clin Exp Hypertens. 29 : 489-501, 2007.

Luksha L, Luksha N, Kublickas M, Nisell H and Kublickiene K : Diverse mechanisms of endothelium-derived

hyperpolarizing factor-mediated dilatation in small myometrial arteries in normal human pregnancy and

preeclampsia. Biol Reprod. 83 : 728-735, 2010.

Deja MA, Gołba KS, Widenka K, Mrozek R, Biernat J, Kolowca M, Malinowski M and Woś S : Angiotensinconverting enzyme inhibitors reveal non-NO-, non-prostacycline-mediated endothelium-dependent

relaxation in internal thoracic artery of hypertensive patients. Int J Cardiol. 102 : 455-456, 2005.

(特に重要な文献については,番号をゴシック体で表記している.)

150

Endothelium-dependent Hyperpolarization (EDH) in Hypertension

Kenichi GOTO

Department of Health Sciences, Graduate School of Medical Sciences,

Kyushu University, Fukuoka, Japan

Abstract

Hypertension is one of the major risk factors for cardiovascular disease. While endothelium-derived

nitric oxide is a major vasodilator in large-size vessels, endothelium-dependent hyperpolarization

(EDH) initiated in endothelial cells plays a central role in endothelium-dependent vasodilation in

resistance size arteries. In animal models, EDH ‒mediated relaxations are impaired in hypertension

and antihypertensive treatments restore such impairments. However, the underlying mechanisms of

impaired EDH and its improvement by antihypertensive treatments are poorly understood. Emerging

evidence suggests that alterations of endothelial ion channels such as small conductance Ca2+

-activated K+ (SKCa) and transient receptor potential vanilloid type 4 (TRPV4) channels contribute to

the impaired EDH in hypertension. In this review, we present the current knowledge about changes in

EDH in hypertension. We then explore underlying mechanisms of impaired EDH and potential

therapeutic approaches aimed at the prevention and restoration of impaired EDH in hypertension,

with special reference to the role of endothelial SKCa channels and TRPV4 channels.

Key words : endothelial function, endothelium-dependent hyperpolarization, hypertension, small

conductance Ca2+ -activated K+ channel, transient receptor potential vanilloid type 4

channel

著者プロフィール

後藤 健一(ごとう けんいち)

九州大学教授(大学院医学研究院保健学部門看護学分野).医学博士.

◆略歴 1968 年福岡県に生まれる.1994 年九州大学医学部卒業.

2000 年九州大学健康科学センター研究生修了.2002 年オーストラリア国立大学ジョン

カーティンスクールオブメディカルリサーチ博士研究員.2009 年九州歯科大学総合内科助

教.2014 年九州大学病院腎高血圧脳血管内科助教.2018 年九州大学病院腎高血圧脳血管

内科講師.2020 年より現職.

◆研究テーマと抱負 高血圧における血管内皮機能障害の機序の解明を目指し,主に電気生理学的

な手法を用いた基礎研究に取り組んできました.職域集団を対象とした高血圧の臨床研究

にも携わっています.今後は多職種連携で高血圧発症予防につながる研究をすすめていき

たいと思っています.

◆趣味 読書,ドライブ

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る