リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quantitative analysis of metacarpophalangeal joints during active flexion using four-dimensional computed tomography (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quantitative analysis of metacarpophalangeal joints during active flexion using four-dimensional computed tomography (本文)

石井, 和典 慶應義塾大学

2021.03.23

概要

Background: The metacarpophalangeal joint has a unique morphology with a high degree of freedom. However, few studies have analyzed the kinematics of fingers owing to the rapid movement of the small bones involved. The in-vivo kinematics of metacarpophalangeal joints were analyzed by four-dimensional computed tomography (4DCT) and associated with its morphology.

Methods: The flexion motion of the fingers of bilateral hands in 10 volunteers were examined using 4DCT. Iterative surfaces were registered to trace the surface of the proximal phalanges with respect to metacarpals. Rotation angles were calculated using Euler/Cardan angles.

Findings: In the index finger, the proximal phalange supinated to a maximum flexion of 40◦ and then pronated, and its range of rotation was larger than the previous reports. In the other fingers, the proximal phalanges continued to supinate during flexion. The helical axis of the proximal phalange passed a point extremely close to the center point of bilateral condyles, and it moved toward the proximal and palmar directions until the middle stage of flexion and toward the proximal and dorsal directions during the late stage of flexion. The translation of the rotation axis was larger in the ring and little fingers.

Interpretation: The rotation in the index finger was larger than previously reported. The helical axes moved in the dorsal direction and proximally during the latter phase of the flexion. These results can be employed to better understand the causes of implant failure of the metacarpophalangeal joints.

関連論文

参考文献

Biswas, D., Bible, J.E., Bohan, M., Simpson, A.K., Whang, P.G., Grauer, J.N., 2009. Radiation exposure from musculoskeletal computerized tomographic scans. J. Bone Joint Surg. Am. 91, 1882–1889. https://doi.org/10.2106/JBJS.H.01199.

Buczek, F.L., Sinsel, E.W., Gloekler, D.S., Wimer, B.M., Warren, C.M., Wu, J.Z., 2011. Kinematic performance of a six degree-of-freedom hand model (6DHand) for use in occupational biomechanics. J. Biomech. 44, 1805–1809. https://doi.org/10.1016/j.jbiomech.2011.04.003.

Choi, Y.S., Lee, Y.H., Kim, S., Cho, H.W., Song, H.T., Suh, J.S., 2013. Four-dimensional real-time cine images of wrist joint kinematics using dual source CT with minimal time increment scanning. Yonsei Med. J. 54, 1026–1032. https://doi.org/10.3349/ymj.2013.54.4.1026.

Coupier, J., Moiseev, F., Feipel, V., Rooze, M., Van Sint Jan, S., 2014. Motion representation of the long fingers: a proposal for the definitions of new anatomical frames. J. Biomech. 47, 1299–1306. https://doi.org/10.1016/j. jbiomech.2014.02.017.

Coupier, J., Hamoudi, S., Telese-Izzi, S., Feipel, V., Rooze, M., Van Sint Jan, S., 2016. A novel method for in-vivo evaluation of finger kinematics including definition of healthy motion patterns. Clin. Biomech. 31, 47–58. https://doi.org/10.1016/j. clinbiomech.2015.10.002.

Degeorges, R., Parasie, J., Mitton, D., Imbert, N., Goubier, J.N., Lavaste, F., 2005. Three- dimensional rotations of human three-joint fingers: an optoelectronic measurement. Preliminary results. Surg. Radiol. Anat. 27, 43–50. https://doi.org/10.1007/s00276- 004-0277-4.

Dumont, C., Ziehn, C., Kubein-Meesenburg, D., Fanghanel, J., Sturmer, K.M., Nagerl, H., 2009. Quantified contours of curvature in female index, middle, ring, and small metacarpophalangeal joints. J. Hand. Surg. [Am.] 34, 317–325. https://doi.org/10.1016/j.jhsa.2008.10.004.

Garcia-Elias, M., Alomar Serrallach, X., Monill Serra, J., 2014. Dart-throwing motion in patients with scapholunate instability: a dynamic four-dimensional computed tomography study. J. Hand Surg. Eur. 39, 346–352. https://doi.org/10.1177/ 1753193413484630.

Goldfarb, C.A., Stern, P.J., 2003. Metacarpophalangeal joint arthroplasty in rheumatoid arthritis. A long-term assessment. J. Bone Joint Surg. Am. 85, 1869–1878. https:// doi.org/10.2106/00004623-200310000-00001.

Hess, F., Furnstahl, P., Gallo, L.M., Schweizer, A., 2013. 3D analysis of the proximal interphalangeal joint kinematics during flexion. Comput. Math. Methods Med. 2013, 138063. https://doi.org/10.1155/2013/138063.

Hussein, A.I., Stranart, J.C., Meguid, S.A., Bogoch, E.R., 2011. Biomechanical validation of finite element models for two silicone metacarpophalangeal joint implants. J. Biomech. Eng. 133, 024501. https://doi.org/10.1115/1.4003311.

Kamata, Y., Nakamura, T., Tada, M., Sueda, S., Pai, D.K., Toyama, Y., 2016. How the lumbrical muscle contributes to placing the fingertip in space: a three dimensional cadaveric study to assess fingertip trajectory and metacarpophalangeal joint balancing. J. Hand Surg. Eur. Vol. 41, 386–391. https://doi.org/10.1177/ 1753193415597113.

Kataoka, T., Moritomo, H., Miyake, J., Murase, T., Yoshikawa, H., Sugamoto, K., 2011. Changes in shape and length of the collateral and accessory collateral ligaments of the metacarpophalangeal joint during flexion. J. Bone Joint Surg. Am. 93, 1318–1325. https://doi.org/10.2106/JBJS.J.00733.

Kerkhof, F.D., Brugman, E., D’Agostino, P., Dourthe, B., van Lenthe, G.H., Stockmans, F., Jonkers, I., Vereecke, E.E., 2016. Quantifying thumb opposition kinematics using dynamic computed tomography. J. Biomech. 49, 1994–1999. https://doi.org/10.1016/j.jbiomech.2016.05.008.

Kinzel, G.L., Hillberry, B.M., Hall Jr., A.S., Van Sickle, D.C., Harvey, W.M., 1972. Measurement of the total motion between two body segments. II. Description of application. J. Biomech. 5, 283–293. https://doi.org/10.1016/0021-9290(72) 90045-0.

Marshall, T.G., Sivakumar, B., Smith, B.J., Hile, M.S., 2018. Mechanics of metacarpophalangeal joint extension. J. Hand. Surg. [Am.] 43, 681 e681–681 e685. https://doi.org/10.1016/j.jhsa.2017.12.010.

Minami, A., An, K.N., Cooney 3rd, W.P., Linscheid, R.L., Chao, E.Y., 1985. Ligament stability of the metacarpophalangeal joint: a biomechanical study. J. Hand. Surg. [Am.] 10, 255–260. https://doi.org/10.1016/s0363-5023(85)80117-9.

Ochia, R.S., Inoue, N., Renner, S.M., Lorenz, E.P., Lim, T.H., Andersson, G.B., An, H.S., 2006. Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine (Phila Pa 1976) 31, 2073–2078. https://doi.org/10.1097/01. brs.0000231435.55842.9e.

Oki, S., Kaneda, K., Yamada, Y., Yamada, M., Morishige, Y., Harato, K., Matsumura, N., Nagura, T., Jinzaki, M., 2019. Four-dimensional CT analysis using sequential 3D-3D registration. J. Vis. Exp. 153 https://doi.org/10.3791/59857.

Pagowski, S., Piekarski, K., 1977. Biomechanics of metacarpophalangeal joint. J. Biomech. 10, 205–209. https://doi.org/10.1016/0021-9290(77)90060-4.

Penrose, J.M., Williams, N.W., Hose, D.R., Trowbridge, E.A., 1996. An examination of one-piece metacarpophalangeal joint implants using finite element analysis. J. Med. Eng. Technol. 20, 145–150. https://doi.org/10.1016/s1297-3203(00)73473-1.

Ryan, T.M., Walker, A., 2010. Trabecular bone structure in the humeral and femoral heads of anthropoid primates. Anat. Rec. (Hoboken) 293, 719–729. https://doi.org/ 10.1002/ar.21139.

Ryu, J.H., Miyata, N., Kouchi, M., Mochimaru, M., Lee, K.H., 2006. Analysis of skin movement with respect to flexional bone motion using MR images of a hand. J. Biomech. 39, 844–852. https://doi.org/10.1016/j.jbiomech.2005.02.001.

Samara, E.T., Aroua, A., Bochud, F.O., Ott, B., Theiler, T., Treier, R., Trueb, P.R., Vader, J.-P., Verdun, F.R., 2012. Exposure of the Swiss population by medical X-rays. Health Phys. 102, 263–270. https://doi.org/10.1097/HP.0b013e31823513ff.

Tamai, K., Ryu, J., An, K.N., Linscheid, R.L., Cooney, W.P., Chao, E.Y., 1988. Three- dimensional geometric analysis of the metacarpophalangeal joint. J. Hand. Surg. [Am.] 13, 521–529. https://doi.org/10.1016/s0363-5023(88)80088-1.

Trail, I.A., Martin, J.A., Nuttall, D., Stanley, J.K., 2004. Seventeen-year survivorship analysis of silastic metacarpophalangeal joint replacement. J. Bone Joint Surg. (Br.) 86, 1002–1006. https://doi.org/10.1302/0301-620x.86b7.15061.

Troupis, J.M., Amis, B., 2013. Four-dimensional computed tomography and trigger lunate syndrome. J. Comput. Assist. Tomogr. 37, 639–643. https://doi.org/10.1097/ RCT.0b013e31828b68ec.

Wang, K.K., Zhang, X., McCombe, D., Ackland, D.C., Ek, E.T., Tham, S.K., 2018. Quantitative analysis of in-vivo thumb carpometacarpal joint kinematics using four- dimensional computed tomography. J. Hand Surg. Eur. 43, 1088–1097. https://doi.org/10.1177/1753193418789828.

Weiss, A.P., Moore, D.C., Infantolino, C., Crisco, J.J., Akelman, E., McGovern, R.D., 2004. Metacarpophalangeal joint mechanics after 3 different silicone arthroplasties. J. Hand. Surg. [Am.] 29, 796–803. https://doi.org/10.1016/j.jhsa.2004.04.023.

Zhao, K., Breighner, R., Holmes 3rd, D., Leng, S., McCollough, C., An, K.N., 2015. A technique for quantifying wrist motion using four-dimensional computed tomography: approach and validation. J. Biomech. Eng. 137 https://doi.org/ 10.1115/1.4030405.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る