リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Correlation between musculoskeletal structure of the hand and primate locomotion: Morphometric and mechanical analysis in prehension using the cross- and triple-ratios.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Correlation between musculoskeletal structure of the hand and primate locomotion: Morphometric and mechanical analysis in prehension using the cross- and triple-ratios.

TAMAGAWA Toshihiro LUNDH Torbjörn SHIGETOSHI Kenji 70335165 0000-0003-0989-5990 NITTA Norihisa 40324587 USHIO Noritoshi INUBUSHI Toshiro 20213142 SHIINO Akihiko 50215935 0000-0001-6203-9339 KARLSSON Anders INOUE Takayuki MERA Yutaka 40219960 HINO Kodai KOMORI Masaru 80186824 SAWAJIRI Shuji NAKA Shigeyuki 10359771 HONMA Satoru 40285581 KIMURA Tomoko 00449852 UCHIMURA Yasuhiro 90803990 IMAI Shinji 90283556 EGI Naoko OTANI Hiroki UDAGAWA Jun 10284027 0000-0002-6573-9434 滋賀医科大学

2020.05.04

概要

Biometric ratios of the relative length of the rays in the hand have been analyzed between primate species in the light of their hand function or phylogeny. However, how relative lengths among phalanges are mechanically linked to the grasping function of primates with different locomotor behaviors remains unclear. To clarify this, we calculated cross and triple-ratios, which are related to the torque distribution, and the torque generation mode at different joint angles using the lengths of the phalanges and metacarpal bones in 52 primates belonging to 25 species. The torque exerted on the finger joint and traction force of the flexor tendons necessary for a cylindrical grip and a suspensory hand posture were calculated using the moment arm of flexor tendons measured on magnetic resonance images, and were compared among Hylobates spp., Ateles sp., and Papio hamadryas. Finally, the torques calculated from the model were validated by a mechanical study detecting the force exerted on the phalanx by pulling the digital flexor muscles during suspension in these three species. Canonical discriminant analysis of cross and triple-ratios classified primates almost in accordance with their current classification based on locomotor behavior. The traction force was markedly reduced with flexion of the MCP joint parallel to the torque in brachiating primates; this was notably lower in the terrestrial quadrupedal primates than in the arboreal primates at mild flexion. Our mechanical study supported these features in the torque and traction force generation efficiencies. Our results suggest that suspensory or terrestrial quadrupedal primates have hand structures that can exert more torque at a suspensory posture, or palmigrade and digitigrade locomotion, respectively. Furthermore, our study suggests availability of the cross and triple-ratios as one of the indicators to estimate the hand function from the skeletal structure.

この論文で使われている画像

参考文献

1.

Patel BA, Maiolino SA. Morphological Diversity in the Digital Rays of Primate Hands. In: Kivell TL,

Lemelin P, Richmond BG, Schmitt D, editors. The Evolution of the Primate Hand: Anatomical, Developmental, Functional, and Paleontological Evidence. New York, NY: Springer New York; 2016. p. 55–

100.

2.

Kivell TL, Deane AS, Tocheri MW, Orr CM, Schmid P, Hawks J, et al. The hand of Homo naledi. Nat

Commun. 2015; 6:8431. Epub 2015/10/06. https://doi.org/10.1038/ncomms9431 PMID: 26441219

3.

Napier JR, Tuttle R, Tuttle RH. Hands: Princeton University Press; 1993.

4.

Alme´cija S, Smaers JB, Jungers WL. The evolution of human and ape hand proportions. Nat Commun.

2015; 6:7717. Epub 2015/07/14. https://doi.org/10.1038/ncomms8717 PMID: 26171589

5.

Pouydebat E, Laurin M, Gorce P, Bels V. Evolution of grasping among anthropoids. J Evol Biol. 2008;

21(6):1732–43. https://doi.org/10.1111/j.1420-9101.2008.01582.x PMID: 18713244.

6.

Pouydebat E, Gorce P, Coppens Y, Bels V. Biomechanical study of grasping according to the volume of

the object: human versus non-human primates. J Biomech. 2009; 42(3):266–72. https://doi.org/10.

1016/j.jbiomech.2008.10.026 PMID: 19100551.

7.

Lundh T, Udagawa J, Ha¨nel SE, Otani H. Cross- and triple-ratios of human body parts during development. Anat Rec (Hoboken). 2011; 294(8):1360–9. https://doi.org/10.1002/ar.21426 PMID: 21714106.

8.

Fleagle JG. Primate Adaptation and Evolution: Elsevier Science; 2013.

9.

McGraw WS. Positional Behavior of Cercopithecus petaurista. International Journal of Primatology.

2000; 21(1):157–82. https://doi.org/10.1023/a:1005483815514

10.

Mcgraw WS, Zuberbu¨hler K. Socioecology, predation, and cognition in a community of West African

monkeys. Evolutionary Anthropology: Issues, News, and Reviews. 2008; 17(6):254–66.

11.

Schmitt D. Forelimb Mechanics during Arboreal and Terrestrial Quadrupedalism in Old World Monkeys.

In: Strasser E, Fleagle JG, Rosenberger AL, McHenry HM, editors. Primate Locomotion: Recent

Advances. Boston, MA: Springer US; 1998. p. 175–200.

12.

Crompton RH, Sellers WI, Thorpe SK. Arboreality, terrestriality and bipedalism. Philos Trans R Soc

Lond B Biol Sci. 2010; 365(1556):3301–14. https://doi.org/10.1098/rstb.2010.0035 PMID: 20855304

13.

Hunt KD. Positional Behavior in the Hominoidea. Int J Primatol. 1991; 12(2):95–118. https://doi.org/10.

1007/BF02547576

14.

Needham T. Visual complex analysis. Oxford: Oxford University Press; 1997. xxiii, 592 p. p.

15.

Ahlfors LV. Mo¨bius transformation in several dimensions. Minneapolis: University of Minnesota,

School of Mathematics; 1981.

16.

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012; 9(7):671–5. https://doi.org/10.1038/nmeth.2089 PMID: 22930834

17.

Schmitt D, Zeininger A, Granatosky MC. Patterns, Variability, and Flexibility of Hand Posture During

Locomotion in Primates. In: Kivell TL, Lemelin P, Richmond BG, Schmitt D, editors. The Evolution of the

Primate Hand: Anatomical, Developmental, Functional, and Paleontological Evidence. New York, NY:

Springer New York; 2016. p. 345–69.

18.

Patel BA. Functional morphology of cercopithecoid primate metacarpals. J Hum Evol. 2010; 58(4):320–

37. Epub 2010/03/12. https://doi.org/10.1016/j.jhevol.2010.01.001 PMID: 20226498.

PLOS ONE | https://doi.org/10.1371/journal.pone.0232397 May 4, 2020

28 / 29

PLOS ONE

Primate hand structure and locomotion

19.

Kramer A, Konigsberg LW. Recognizing species diversity among large-bodied hominoids: a simulation

test using missing data finite mixture analysis. J Hum Evol. 1999; 36(4):409–21. https://doi.org/10.

1006/jhev.1998.0278 PMID: 10208794.

20.

Scheffe´ H. The analysis of variance. Wiley classics library ed. New York: Wiley-Interscience Publication; 1999. xvi, 477 p. p.

21.

Thorpe SK, Crompton RH. Orangutan positional behavior and the nature of arboreal locomotion in

Hominoidea. Am J Phys Anthropol. 2006; 131(3):384–401. https://doi.org/10.1002/ajpa.20422 PMID:

16617429.

22.

Granatosky MC, Tripp CH, Schmitt D. Gait kinetics of above- and below-branch quadrupedal locomotion in lemurid primates. J Exp Biol. 2016; 219(Pt 1):53–63. https://doi.org/10.1242/jeb.120840 PMID:

26739686.

23.

Kong YK, Freivalds A, Kim SK. Evaluation of hook handles in a pulling task. Int J Occup Saf Ergon.

2005; 11(3):303–13. https://doi.org/10.1080/10803548.2005.11076651 PMID: 16219158.

24.

Kong YK, Freivalds A. Evaluation of meat-hook handle shapes. International Journal of Industrial Ergonomics. 2003; 32(1):13–23. https://doi.org/10.1016/S0169-8141(03)00022-2

25.

Kong YK, Lowe BD. Optimal cylindrical handle diameter for grip force tasks. International Journal of

Industrial Ergonomics. 2005; 35(6):495–507.

26.

Freivalds A. Biomechanics of the upper limbs: mechanics, modeling, and musculoskeletal injuries. 2nd

ed. Boca Raton, FL: CRC Press; 2011.

27.

Patel BA, Wunderlich RE. Dynamic pressure patterns in the hands of olive baboons (Papio anubis) during terrestrial locomotion: implications for cercopithecoid primate hand morphology. Anat Rec (Hoboken). 2010; 293(4):710–8. https://doi.org/10.1002/ar.21128 PMID: 20235326.

28.

Kikuchi Y. Comparative analysis of muscle architecture in primate arm and forearm. Anat Histol

Embryol. 2010; 39(2):93–106. Epub 2009/12/03. https://doi.org/10.1111/j.1439-0264.2009.00986.x

PMID: 19958344.

PLOS ONE | https://doi.org/10.1371/journal.pone.0232397 May 4, 2020

29 / 29

...

参考文献をもっと見る